\(\frac{\left(1x3x5x...x99\right)x\left(2x2x2x2...2x2\left\{5\:thưso2\right\}\right)}{51x52x53x...x100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{9}{10}.100-\left(\frac{5}{2}\left(y+\frac{206}{100}\right)\right):\frac{1}{2}=89\)
\(90-\left(\frac{5}{2}\left(y+\frac{103}{50}\right)\right)=89.\frac{1}{2}\)
\(90-\left(\frac{5}{2}\left(y+\frac{103}{50}\right)\right)=\frac{89}{2}\)
\(\frac{5}{2}\left(y+\frac{103}{50}\right)=90-\frac{89}{2}\)
\(\frac{5}{2}\left(y+\frac{103}{50}\right)=\frac{180}{2}-\frac{89}{2}\)
\(\frac{5}{2}\left(y+\frac{103}{50}\right)=\frac{91}{2}\)
\(y+\frac{103}{50}=\frac{91}{2}.\frac{2}{5}\)
\(y+\frac{103}{50}=\frac{91}{5}\)
\(y=\frac{91}{5}-\frac{103}{50}\)
\(y=\frac{910}{50}-\frac{103}{50}\)
\(y=\frac{807}{50}\)
A= \(\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{2}{x+3}-...+\frac{8}{x+5}-\frac{8}{x+6}\)
A=\(\frac{1}{x+1}+\frac{1}{x+3}+\frac{2}{x+4}+\frac{4}{x+5}-\frac{8}{x+6}\)
Rồi tiếp tục làm nhé bạn.
Ta có: \(\frac{3}{\left(x+2\right)\left(x+5\right)}=\frac{1}{x+2}-\frac{1}{x+5}\); \(\frac{5}{\left(x+5\right)\left(x+10\right)}=\frac{1}{x+5}-\frac{1}{x+10}\)
\(\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{1}{x+10}-\frac{1}{x+17}\);
=> Phương trình tương đương:
\(\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)<=> \(\frac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
<=> \(\frac{15}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
=> x=15
Đáp số: x=15