Chứng tỏ rằng:
1/6+1/7+1/8+1/9+.......+1/18+1/19<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+....+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}\)
\(A=\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{14}\right)+\left(\frac{1}{15}+\frac{1}{16}+...+\frac{1}{19}\right)\)
\(\Rightarrow A< \left(\frac{1}{5}+...+\frac{1}{5}\right)+\left(\frac{1}{10}+...+\frac{1}{10}\right)+\left(\frac{1}{15}+...+\frac{1}{15}\right)\)
\(\Rightarrow A< \frac{1}{5}\cdot5+\frac{1}{10}\cdot5+\frac{1}{15}\cdot5\)
\(\Rightarrow A< 1+\frac{1}{2}+\frac{1}{3}\)
\(\Rightarrow A< \frac{11}{6}< 2\)
\(\Rightarrow A< 2\left(đpcm\right)\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10-9}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}< 1\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\\ A< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\\ A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\\ A< \frac{9}{10}< 1\Rightarrow A< 1\)
Ta có : \(\dfrac{1}{6}>\dfrac{1}{10}\)
\(\dfrac{1}{7}>\dfrac{1}{10}\)
\(\dfrac{1}{8}>\dfrac{1}{10}\)
\(\dfrac{1}{9}>\dfrac{1}{10}\)
\(\dfrac{1}{10}=\dfrac{1}{10}\)
Cộng tất cả các vế ( phải theo phải ) ( trái theo trái ta được )
\(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}\)
\(\Rightarrow\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{5}{10}=\dfrac{1}{2}\)
Ta có:
\(\dfrac{1}{6}>\dfrac{1}{10}\)
\(\dfrac{1}{7}>\dfrac{1}{10}\)
\(\dfrac{1}{8}>\dfrac{1}{10}\)
\(\dfrac{1}{9}>\dfrac{1}{10}\)
\(\dfrac{1}{10}=\dfrac{1}{10}\)
Do đó ta có:
\(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}\)
\(\Rightarrow\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{1}{10}\times5\)
\(\Rightarrow\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{5}{10}=\dfrac{1}{2}\)
Vậy \(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{1}{2}\)
ta có
1/2<1/1.2
1/3<1/2.3
...
1/32<1/31.32
=>1/2+1/3+...+1/32<1/1.2+1/2.3+...+1/31.32
=>1/2+1/3+...+1/32<1/1-1/2+1/2-1/3+...+1/31-1/32
=>1/2+1/3+...+1/32<1/1-1/32=31/32
vì 31/32<1
=>tổng đó <1
ta lại có 1+1=2 mà 2 <3
=>tổng đó <3
vậy:-------(bn tự lm nha)
k cho mik vs nha
Ta có:
1/2^2 < 1/1.2
1/3^2 < 1/2.3
1/4^2< 1/3.4
........................
1/8^2<1/7.8
Vậy B < 1/1.2+1/2.3+1/3.4+....+1/7.8
B< 1-1/8
B<7.8<1
=> B<1
Có \(\frac{18}{18+19+20}>\frac{18}{18+19+20+21}\)
\(\frac{19}{18+19+21}>\frac{19}{18+19+20+21}\)
\(\frac{20}{18+19+21}>\frac{20}{18+19+20+21}\)
\(\frac{21}{18+19+21}>\frac{21}{18+19+20+21}\)
=> \(\frac{18}{18+19+20}+\frac{19}{18+19+21}+\frac{20}{18+19+21}+\frac{21}{18+19+21}>\frac{18}{18+19+20+21}+\frac{19}{18+19+20+21}+\frac{20}{18+19+20+21}+\frac{21}{18+19+20+21}\)
=> \(\frac{18}{18+19+20}+\frac{19}{18+19+21}+\frac{20}{18+19+21}+\frac{21}{18+19+21}>\frac{18+19+20+21}{18+19+20+21}\)
=>\(\frac{18}{18+19+20}+\frac{19}{18+19+21}+\frac{20}{18+19+21}+\frac{21}{18+19+21}>1\)
=>M>1
Còn lại mình không biết, đúng thì tick nha
Ta có :
1/6 < 1/5 , 1/7 < 1/5 , ... 1/19 < 1/5
=> 1/6 + 1/7 + ...+ 1/19 < 1/5 + 1/5 + ...+ 1/5
=> 1/6 + 1/7 + ...+ 1/19 < 1/5 . 14
=> 1/6 + 1/7 + ...+ 1/19 < 14/5 = 2 , 8