Chứng minh rằng : 3n+3 +3n+1 +2n+3 +2n+3 chia hết cho 6 với n nguyên dương
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP :))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
n3 +3n2+2n=n3+n2+2n2+2n=n2(n+1)+2n(n+1)=(n+1)(n2+2n)=(n+1)(n+2)n
Tích 3 số liên tiếp chia hết cho 3 nha
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
\(3n+17⋮2n+3\)
\(\Leftrightarrow2.\left(3n+17\right)⋮2n+3\)
\(\Leftrightarrow6n+34⋮2n+3\)
\(\Leftrightarrow3.\left(2n+3\right)+25⋮2n+3\)
Mà \(3.\left(2n+3\right)⋮2n+3\)
\(\Rightarrow25⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)
Làm nốt
Ta có 2n3 + 3n2 + n = n(n + 1)(2n + 1)
Vì n và n + 1 là 2 số nguyên liên tiếp nên n(n + 1) chia hết cho 2 nên n(n + 1)(2n + 1) chia hết cho 2 (1)
Vậy để 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết cho 6 ta cần chứng minh n(n + 1)(2n + 1) chia hết cho 3
Thật vậy
Ta có TH1: n = 3k + 1 (k thuộc Z)
=> (3k + 1)(3k + 2)(6k + 3) chia hết cho 3
TH2: n = 3k + 2 (k thuộc Z)
=> (3k + 2)(3k + 3)(6k + 5) chia hết cho 3
=> n(n + 1)(2n + 1) chia hết cho 3 (2)
Từ (1) và (2) suy ra 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết 2.3 = 6 với mọi số nguyên n
bạn àm theo cách đòng dư thức á. Nếu bạn không biết làm thì nhắn xuống dưới mình giải dùm