K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

Gọi \(ƯCLN\left(5n+1;6n+1\right)=d\)

\(\Rightarrow\)\(5n+1⋮d\) và \(6n+1⋮d\)

\(\Rightarrow\)\(6\left(5n+1\right)⋮d\) và \(5\left(6n+1\right)⋮d\)

\(\Rightarrow\)\(30n+6⋮d\) và \(30n+5⋮d\)

\(\Rightarrow\)\(\left(30n+6\right)-\left(30n+5\right)⋮d\)

\(\Rightarrow\)\(30n+6-30n-5⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d=1\)

\(\Rightarrow\)\(5n+1\) và \(6n+1\) là hai số nguyên tố cùng nhau vì có ước chung lớn nhất là 1

Vậy \(A=\frac{5n+1}{6n+1}\) là phân số tối giản 

Chúc bạn học tốt ~

20 tháng 8 2015

Gọi ƯC(5n-4,6n-5)=d

Ta có: 5n-4 chia hết cho d=>6.(5n-4)=30n-24 chia hết cho d

           6n-5 chia hết cho d=>5,(6n-5)=30n-25 chia hết cho d

=>30n-24-(30n-25) chia hết cho d

=>1 chia hết cho d

=>d=1

=>(5n-4,6n-5)=1

=>Phân số 5n-4/6n-5 là phân số tối giản.

=>ĐPCM

AH
Akai Haruma
Giáo viên
27 tháng 8 2024

Lời giải:
Gọi $d=ƯCLN(5n+6, 6n+7)$

$\Rightarrow 5n+6\vdots d; 6n+7\vdots d$
$\Rightarrow 6(5n+6)-5(6n+7)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$

$\Rightarrow \frac{5n+6}{6n+7}$ là phân số tối giản.

28 tháng 4 2017

Đặt d = ƯCLN(5n+1, 6n+1) thì

5n+1 chia hết cho d, 6n+1 chia hết cho d

=> 6(5n+1) - 5(6n+1) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1) = {1; -1} => d = 1

Vậy 5n+1/6n+1 tối giản với mọi STN n

28 tháng 4 2017

Gọi d là UCLN của 5n+1 và 6n+1

\(\Rightarrow5n+1⋮d\)và \(6n+1⋮d\)

Hay \(6\left(5n+1\right)⋮d\)và \(5\left(6n+1\right)⋮d\)

\(\Leftrightarrow30n+6⋮d\)và \(30n+5⋮d\)

\(\Rightarrow30n+6-\left(30n+5\right)⋮d\)

Hay \(1⋮d\Rightarrow d=1hoac\left(-1\right)\Rightarrow dpcm\)

Ai thấy đúng k nha

9 tháng 5 2016

goij d là UCLN của 5n+1 và 6n+1

ta có 5n+1 chia hết cho d=> 6(5n+1) chia hết cho d=> 30n+6 chia hết cho d(1)

ta có 6n+1 chia hết cho d=> 5(6n+1) chia hết cho d=> 30n+5 chia hết cho d(2)

lấy (1)-(2)

ta có (30n+6)-(30n+5)chia hết cho d

vậy 1 chia hết cho d

nên d=(1;-1)

vậy phân số đã cho tối giản

20 tháng 8 2015

Bạn vào câu hỏi tương tự đi có câu trả lời của mình đó.

8 tháng 5 2017

Giả sử ƯCLN của (5n+1) và (6n+1) là d, ta cần chứng minh d = 1.

Thật vậy: Do d là ƯCLN của (5n+1) và (6n+1) nên \(\hept{\begin{cases}5n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow6\left(5n+1\right)-5\left(6n+1\right)⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d=1.\)

Vậy \(\frac{5n+1}{6n+1}\) là phân số tối giản.

7 tháng 5 2017

\(\frac{5n+1}{6n+1}\)là phân số tối giản vì

\(\frac{5n+1}{6n+1}=\frac{5}{6}+\frac{n+1}{n+1}=\frac{5}{6}+1\)

Mà 5/6 là phân số tối giản nên 5n+1/6n+1 tối giản

18 tháng 11 2018

Giả sử ƯCLN của (5n + 1) và (6n + 1) là d, ta cần chứng minh d = 1.

Do d là ƯCLN của (5n + 1) và (6n + 1) nên \(\hept{\begin{cases}5n+1⋮d\\6n+1⋮d\end{cases}}\Rightarrow6\left(5n+1\right)-5\left(6n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{5n+1}{6n+1}\)là phân số tối giản.

18 tháng 11 2018

\(\text{Gọi ƯCLN(5n+1;6n+1) = d}\)

\(\Rightarrow5n+1⋮d\)và \(6n+1⋮d\)

\(\Rightarrow\left(6n+1\right)-\left(5n+1\right)⋮d\)

\(\Rightarrow n⋮d\)

\(\Rightarrow5n⋮d\)

Mà \(5n+1⋮d\)

\(\Rightarrow5n+1-5n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\)5n+1 và 6n+1  nguyên tố cùng nhau

=> p/s đó tối giản

13 tháng 6 2020

giải giúp mình với ạ

13 tháng 6 2020

Ta xét ( 4n + 2 ; 6n + 1 ) = ( 6n + 1 - ( 4n + 2 ) ; 4n + 2 ) 

= ( 2n - 1; 4n + 2 ) = ( 4n + 2 - ( 2n - 1 ); 2n - 1 ) 

= ( 2n + 1 ; 2n - 1) 

= ( 2n + 1; 2n + 1 - ( 2n - 1) ) 

= ( 2n + 1; 2 ) 

= 1

=> 4n + 2 và 6n + 1 là hai số nguyên tố cùng nhau 

=> 4n+2/6n+1 là phân số tối giản.

22 tháng 4 2023

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản