K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

1) Đặt P = (a-1)/a +(b-1)/b+(c-4)/c 
Dễ thấy P = 3 - (1/a + 1/b + 4/c) 
Áp dụng BĐT Bu-nhi-a-cốp-xki : 
(1/a + 1/b + 4/c)(a + b + c) <= [căn(1/a).căn a + căn(1/b).căn b + căn(4/c).căn c]^2 = (1 + 1 + 2)^2 = 16 
=> 1/a + 1/b + 4/c <= 16/6 = 8/3 

Suy ra : P >= 3 - 8/3 = 1/3 
Min P = 3 <=> a = b = 3/2 và c = 3 


2) Đặt P = (a+1)/[√(a⁴+a+1) -a²] = {(a + 1).[√(a⁴+a+1) + a²]} / (a^4 + a + 1 - a^2) = (a + 1).[√(a⁴+a+1) + a²]/(a + 1) = √(a⁴+a+1) + a² (nhân liên hợp) 
Ta có : 4a^2 + a√2 -√2 = 0 
=> a^2 = (√2 - a√2)/4 = (1 - a)/(2√2) 
=> a^4 = (1 - 2a + a^2)/8 
Do đó P = √[(1 - 2a + a^2)/8 + a + 1] + (1 - a)/(2√2) = √[(a^2 + 6a + 9)/8] + (1 - a)/(2√2) = (a + 3)/(2√2) + (1 - a)/(2√2) = √2 (đpcm)

10 tháng 3 2018

có phải là \(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\)

13 tháng 3 2020

Từ \(\left(a+b+c\right):\left(a+b-c\right)=\left(a-b+c\right):\left(a-b-c\right)\)

\(\Rightarrow\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}\)

\(=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)

\(\Rightarrow a+b+c=a+b-c\)\(\Rightarrow\left(a+b+c\right)-\left(a+b-c\right)=0\)

\(\Rightarrow a+b+c-a-b+c=0\)\(\Rightarrow2c=0\)\(\Rightarrow c=0\)( đpcm )

11 tháng 2 2018

bt làm rồi ko cần giải nha 

11 tháng 2 2018

v đăng lên làm j?:/

21 tháng 4 2019

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

21 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

3 tháng 10 2017

Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\) ( áp dụng tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)

Mà \(a=2012\Rightarrow b=c=2012\)

11 tháng 10 2017

hreury

    28 tháng 6 2021

    `(a+b+c)^2=3(ab+bc+ca)`

    `<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`

    `<=>a^2+b^2+c^2=ab+bc+ca`

    `<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`

    `<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

    `VT>=0`

    Dấu "=" xảy ra khi `a=b=c`

    28 tháng 6 2021

    `a^3+b^3+c^3=3abc`

    `<=>a^3+b^3+c^3-3abc=0`

    `<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`

    `<=>(a+b)^3+c^3-3ab(a+b+c)=0`

    `<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`

    `**a+b+c=0`

    `**a^2+b^2+c^2=ab+bc+ca`

    `<=>a=b=c`