cho phân số: \(\frac{n+9}{n-6}\) \(\left(n\varepsilon N\right)n>6\) tìm các giá trị của n để phân số là ps tối giản
hộ mình vs nhé mình sắp thi rùi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{8n+19}{4n+1}=\dfrac{8n+2+17}{4n+1}=\dfrac{2\left(4n+1\right)+17}{4n+1}=2+\dfrac{17}{4n+1}\)
Để bt nguyên thì \(\dfrac{17}{4n+1}\) phải nguyên:
\(\Rightarrow4n+1\inƯ\left(17\right)=\left\{1;-1;17;-17\right\}\)
Mà n phải nguyên nên:
\(\Rightarrow4n+1\in\left\{1;17\right\}\)
\(\Rightarrow n\in\left\{0;4\right\}\)
Vậy: ...
(8n + 19)/(4n + 1) = 2 + 17/(4n+1). Để (8n + 19)/(4n + 1) có giá trị là một số nguyên => 17 chia hết cho 4n + 1
=> 4n + 1 = 17 => n = 4
=> 4n + 1 = 1 => n = 0
(2 số -17; -4 loại vì n ra phân số)
a) n khác 1
b) n-1(5) = -1;1;-5;5
n= 0; 2; -4;6
ai cung k hieu chỉ vai bạn gioi hieu moi thay
dc hay
để A có giá trị bằng 1
suy ra 3 phải chia hết cho n-1
suy ra n-1 \(\in\)Ư(3)={1,3 }
TH1 n-1=1\(\Rightarrow\)n=1+1=2
TH2 n-1=3\(\Rightarrow\)n=3+1=4
Vậy n = 2 hoặc n =4
a) để biểu thức A có giá trị = 1 suy ra 3:n-1=1 suy ra n-1=3
n=4
b) để A là số nguyên tố suy ra 3:n-1 là số nguyên dương
từ trên suy ra n-1=1 hoặc 3
nếu n-1=1 suy ra n =2 3/n-1=3 là snt
nếu n-1=3 suy ra 3/n-1=3/3=1 loại vì ko là snt
a, De A la phan so thi 2-n # 0 suy ra n # 2
Vay n # 2 thi A la phan so
b, vi n la so nguyen nen suy ra 2-n la so nguyen
suy ra 1 chia het cho 2 - n
suy ra 2-n thuoc uoc cua (1)
suy ra 2 - n thuoc { 1 , -1 }
suy ra n thuoc { 1 , 3 }
Vay n thuoc { 1 , 3 }
* Chu y :
Cac tu ( thuoc , uoc , suy ra , chia het ) khi ban trinh bay thi ban viet ki hieu cho minh nhe
để A có giá trị là số nguyên thì (3n+9) phải chia hết cho(n-4)
n-4 chia hết cho n-4
suy ra 3(n-4) cũng chia hết cho n-4
Vậy 3n-12 chia hết cho n-4
Suy ra (3n+9)-(3n-4) chia hết cho n-4
suy ra 13 chia hết cho n-4
n-4 thuộc tập hợp ƯC của 13
Bạn tự làm tiếp nhé!!!( lập bảng hay không đều được)
a) Ta có: \(A=\dfrac{4}{n-1}\left(n\in Z\right)\)
Để biểu thức \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)
Vậy \(n\ne1\) thì biểu thức \(A\) là phân số.
b) Ta có: \(\dfrac{4}{n-1}\left(n\in Z\right)\)
Để biểu thức \(A\) là số nguyên thì \(n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
Vậy \(n\in\left\{2;0;3;-1;5;-3\right\}\) thì biểu thức \(A\) là số nguyên.
a: Để A là phân số thì n-1<>0
hay n<>1
b: Để A là số nguyên thì \(n-1\inƯ\left(4\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
Gọi UCLN(n+9,n-6)=d
Ta có:\(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\)\(\Rightarrow n+9-\left(n-6\right)⋮d\Rightarrow15⋮d\)
\(\Rightarrow d\inƯ\left(15\right)=\left\{1,15,3,5\right\}\)
Với d=3 thì \(\hept{\begin{cases}n+9=3m\\n-6=3n\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n=3m-9\\n=3n+6\end{cases}}\)
Với d=5 thì \(\hept{\begin{cases}n+9=5k\\n-6=5l\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n=5k-9\\n=5l+6\end{cases}}\)
Với d=15 thì \(\hept{\begin{cases}n+9=15x\\n-6=15y\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n=15x-9\\n=15y+6\end{cases}}\)
Để \(\frac{n+9}{n-6}\) tối giản thì d=1 nên \(d\ne3,d\ne5,d\ne15\) nên \(n\ne3m-9;n\ne3n+6;n\ne5k-9;n\ne5l+6;n\ne15x-9;n\ne15y+6\)