K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt a/1=b/2=k

=>a=k; b=2k

\(Q=\dfrac{-5a+6b}{5a+6b}=\dfrac{-5k+12k}{5k+12k}=\dfrac{7}{17}\)

Đặt a/1=b/2=k

=>a=k; b=2k

\(Q=\dfrac{-5a+6b}{5a+6a}=\dfrac{-5k+12k}{11k}=\dfrac{7k}{11k}=\dfrac{7}{11}\)

1 tháng 1 2019

\(Giải\)

Vì: 11 là số nguyên tố mà:(5a+6b)(6a+5b) chia hết cho 11

nên ít nhất 1 trong 2 số trên chia hết cho 11

+) 2 số chia hết cho 11 khi đó (5a+6b)(6a+5b) chia hết cho 121

+) 5a+6b chia hết cho 11

=> 11a+11b-5a-6b chia hết cho 11 <=> 6a+5b chia hết cho 11

=> (5a+6b)(6a+5b) chia hết cho 121

+) 6a+5b chia hết cho 11

=> 11a+11b-6a-5b chia hết cho 11

<=> 5a+6b chia hết cho 11

=> (5a+6b)(6a+5b) chia hết cho 11

Vậy: nếu  (5a+6b)(6a+5b) chia hết cho 11 thì tích đó cũng chia hết cho 121 (đpcm)