giả sử x1 và x2 là nghiệm của pt :\(x^2+2kx+4=0\) Tìm tất cả các giá trị của k sao cho \(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2>=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tồn tại x1 ; x2=> k thuôc (-vc;-2]U[2;vc)
tồn tại x1,2<>0 ; f(0)<>0<=> luôn đúng => k thuôc (-vc;-2]U[2;vc)
\(A=\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_2}{x_1}\right)^2=\left(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\right)^2-2\)
\(A=\left(\dfrac{x^2_1+x^2_2}{x_1.x_2}\right)^2-2=\left(\dfrac{\left(x_1+x_2\right)^2-2x_1.x_2}{x_1.x_2}\right)^2-2\)
\(A\ge3\Leftrightarrow\left(\dfrac{\left(x_1+x_2\right)^2}{x_1.x_2}-2\right)^2\ge5\)\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\left(x_1+x_2\right)^2}{x_1.x_2}-2\ge\sqrt{5}\left(1\right)\\\dfrac{\left(x_1+x_2\right)^2}{x_1.x_2}-2\le-\sqrt{5}\left(2\right)\end{matrix}\right.\)
(1) \(\dfrac{\left(2k\right)^2}{4}\ge2+\sqrt{5}\Leftrightarrow k^2\ge2+\sqrt{5}\Rightarrow k\in(-\infty;-\sqrt{2+\sqrt{5}}]U[\sqrt{2+\sqrt{5}};+\infty)\)
(2)<=> \(\dfrac{\left(2k\right)^2}{4}\le2-\sqrt{5}\Leftrightarrow k^2\le2-\sqrt{5}\left(l\right)\)
kết hợp nghiệm \(k\in(-\infty;-\sqrt{2+\sqrt{5}}]U[\sqrt{2+\sqrt{5}};+\infty)\)
\(\text{Δ}=\left(-4n\right)^2-4\left(12n-9\right)\)
\(=16n^2-48n+36\)
\(=\left(4n-6\right)^2\)>=0
=>Phương trình luôn có hai nghiệm
Theo đề, ta có: \(2x_1x_2+3\left(x_1+x_2\right)-54=0\)
\(\Leftrightarrow2\left(12n-9\right)+3\cdot4n-54=0\)
=>24n-18+12n-54=0
=>36n-72=0
hay n=2
,có \(ac< 0\)=>pt đã cho luôn có 2 nghiệm phân biệt
vi ét \(=>\left\{{}\begin{matrix}x1+x2=2\\x1x2=-1\end{matrix}\right.\)
a,\(A=\left(x1+x2\right)^2-2x1x2=.....\) thay số tính
b,\(B=\left(x1+x2\right)^3-3x1x2\left(x1+x2\right)=.......\)
c,\(C=x1^{2^2}+x2^{2^2}=\left(x1^2+x2^2\right)^2-2\left(x1x2\right)^2=\left[\left(x1+x2\right)^2-2x1x2\right]^2-2\left(x1x2\right)^2=....\)
\(D=x1x2\left(x1+x2\right)=.....\)
\(x1,x2\ne0=>E=\dfrac{\left(x1+x2\right)^3-3x1x2\left(x1+x2\right)}{x1x2}=...\)
\(F=\sqrt{\left(x1-x2\right)^2}=\sqrt{\left(x1+x2\right)^2-4x1x2}=....\)
\(x1,x2\ne-1=>G=\dfrac{\left(x1+x2\right)^2-2x1x2+x1x2}{x1x2+x1+X2+1}=...\)
\(x1,x2\ne0=>H=\left(\dfrac{x1x2+2}{x2}\right)\left(\dfrac{x1x2+2}{x1}\right)=\dfrac{\left(x1x2+2\right)^2}{x1x2}\)
\(=\dfrac{\left(x1x2\right)^2+4x1x2+4}{x1x2}=..\)
Theo vi-et thì ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{3a-1}{2}\\x_1x_2=-1\end{cases}}\)
Từ đây ta có:
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(\frac{3a-1}{2}\right)^2-4.1=\left(\frac{3a-1}{2}\right)^2-4\)
Theo đề bài thì
\(P=\frac{3}{2}.\left(x_1-x_2\right)^2+2\left(\frac{x_1-x_2}{2}+\frac{1}{x_1}-\frac{1}{x_2}\right)^2\)
\(=\frac{3}{2}.\left(x_1-x_2\right)^2+2.\left(x_1-x_2\right)^2\left(\frac{1}{2}-\frac{1}{x_1x_2}\right)^2\)
\(=\left(x_1-x_2\right)^2\left(\frac{3}{2}+2.\left(\frac{1}{2}-\frac{1}{x_1x_2}\right)^2\right)\)
\(=\left(\left(\frac{3a-1}{2}\right)^2-4\right)\left(\frac{3}{2}+2.\left(\frac{1}{2}+1\right)^2\right)\)
\(=6\left(\left(\frac{3a-1}{2}\right)^2-4\right)\ge6.4=24\)
Dấu = xảy ra khi \(a=\frac{1}{3}\)
\(\Delta=\left(m-1\right)^2-4\left(m+3\right)=m^2-6m-11>0\) (1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=m+3\end{matrix}\right.\)
Ta có:
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(m-1\right)^2-2\left(m+3\right)=m^2-4m-5\)
Biểu thức này ko tồn tại cả min lẫn max với điều kiện m từ (1)
Ta có để phương trình có nghiệm thì:
\(\Delta=k^2-4\ge0\)
\(\Leftrightarrow k\ge2;k\le-2\)
Theo đề thì ta có
\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\ge3\)
\(\Leftrightarrow x_1^4+x_2^4-3\left(x_1x_2\right)^2\ge0\)
\(\Leftrightarrow\left(\left(x_1+x_2\right)^2-2x_1x_2\right)^2-5x_1x_2\ge0\)
\(\Leftrightarrow\left(4k^2-4\right)^2-5.4^2\ge0\)
Làm nốt
\(\left|k\right|\ge2\)
\(P=\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left(\frac{\left(x_1+x_2\right)^2}{x_1x_2}-2\right)^2-2\\ \)
\(P=\left(\frac{\left(2k\right)^2}{4}-2\right)^2-2=\left(k^2-2\right)^2-2\)
\(P\ge3\Rightarrow\left(k^2-2\right)^2\ge5\Leftrightarrow\orbr{\begin{cases}k^2-2\le-\sqrt{5}\left(l\right)\\k^2-2\ge\sqrt{5}\left(n\right)\end{cases}}\)
\(\orbr{\begin{cases}k\le-\sqrt{2+\sqrt{5}}\\k\ge\sqrt{2+\sqrt{5}}\end{cases}}\)