Cho bt M =\(\frac{5-x}{x-2}\). Tìm x nguyên để M có GTNN
giúp mk , mk tk cho
kb nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=\frac{4-x}{4-x}+\frac{10}{4-x}=1+\frac{10}{4-x}\ge1\)
Dấu "=" xảy ra khi \(10⋮\left(4-x\right)\Leftrightarrow4-x\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
4-x | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 3 | 5 | 2 | 6 | -1 | 9 | -6 | 14 |
Vậy Pmin = 1 <=> x = {-6;-1;2;3;5;6;9;14}
Ta có : 14 - x / 4-x = 10 + 4-x / 4-x = 10/4 - x + 4 - x / 4 - x= ( 10/4 - x) + 1
Để cho ( 10/4 -x ) + 1 có được GTNN thì 10/4 - x phải đạt GTNN
=> 4-x đạt GTNN mà -x < 0 => 4-x bé hơn hoặc bằng 4
Vì 4-x bé hơn hoặc bằng 4 đạt GTNN
=> 4-x = 4 => x= 0
Thay vào biểu thức trên ta lại có :
14-0 / 4-0 = 14/4 = 3,5
Vậy GTNN của P = 3,5 <=> ( khi và chỉ khi ) x= 0.
a, Ta có: \(\left|x+4\right|\ge0\)
=> B = |x + 4| + 1996 \(\ge\)1996
Dấu "=" xảy ra <=> x + 4 = 0 <=> x = -4
Vậy GTNN của B là 1996 tại x = -4
b, Để C có giá trị nhỏ nhất
=> x - 2 phải lớn nhất
=> x - 2 = 5 => x = 7
=> GTNN của C = \(\frac{5}{x-2}=\frac{5}{7-2}=\frac{5}{5}=1\)
Vậy GTNN của C = 1 tại x = 7
c, Ta có: \(D=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)
Để D có giá trị nhỏ nhất
=> \(\frac{9}{x-4}\)là số nhỏ nhất
=> x - 4 phải lớn nhất
=> x - 4 = 9 => x = 13
=> GTNN của D = \(\frac{x+5}{x-4}=\frac{13+5}{13-4}=\frac{18}{9}=2\)
Vậy GTNN của D = 2 tại x = 13
Điều kiện có 2 nghiệm phân biệt tự làm nha
Theo vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=5\\x_1.x_2=m-2\end{cases}}\)
\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)
\(\Leftrightarrow4\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}\right)=9\)
\(\Leftrightarrow4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)
Làm nốt nhé
Câu 1:
M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)
=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)
=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)
\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)
\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)
B=\(\frac{2016-x+1}{2016-x}\)=\(\frac{2016-x}{2016-x}\)+\(\frac{1}{2016-x}\)=1+\(\frac{1}{2016-x}\)
*B có GTLN
ĐỂ B LỚN NHẤT=>1+\(\frac{1}{2016-x}\)lớn nhất=>2016-x nhỏ nhất;2016-x>0;x thuộc Z
=>2016-x=1
=>x=2015
=>B=2
vậy x=2015 thì B có GTLN B =2
*B có GTNN
ĐỂ B NHỎ NHẤT =>1+\(\frac{1}{2016-X}\)NHỎ NHẤT=>2016-X lớn NHẤT;2016-x<0;x thuộc Z
=>2016-x=-1
=>x=2017
=>B=0
vậy x=2017 thi b có GTNN B=0
tưởng gì.ngay mô cô ra btvn cụng lên đay hỏi.
tau đọc hết câu hỏi của mi rồi...nỏ khi mô mi tự mần cả hổng
Xét : x - y = 2( x +y )
=> x - y = 2x + 2y => x - 2x = 2y + y => - x = 2y ( 1 )
Xét : x - y = x : y
=> = [ y + ( - x ) ] = x : y => - ( y + 2y ) = x : y => - 3 y = x : y => x = - 3y2 = > - x = 3y2 ( 2 )
Từ ( 1 ) và ( 2 ) => 2y = 3y2 <=> 0
Mà y khác 0 vì y là số chia trong x :y
Vậy ko có cặp số x ; y nào thỏa mãn đề bài.
^^ Học tốt!
Xét x-y = 2x + 2y ,ta có:
=>(-x)=3y (1)... xét x-y=x/y,ta lại có:
\(\left(x-y\right)\times y=x\) (quy tắc nhân chéo 2 p/s bằng nhau)...từ đó suy ra:
\(xy-y^2=x\)nên :\(-\left(xy-y^2\right)=\left(-x\right)\)=> \(-xy+y^2=-x\)phá ngoặc nên đổi dấu...
thay (1) vào biểu thức ta có: -xy+y2=3y hay y2-xy=3y
=>y(y-x)=3y suy ra y-x=3 nên y=3+x (2);
Tù (1) và (2) ta có: 3y=3(3+x)= (-x)
hay 9+3x=(-x) nên => 9+3x-(-x)=0 => 9+4x=0 nên x=\(\frac{-9}{4}\)từ đó suy ra
y=\(-\frac{\left(-\frac{9}{4}\right)}{3}\)=>y=\(\frac{9}{4}:3=>y=\frac{3}{4}\)
Để \(A=\frac{5}{x-2014}\)đạt giá trị nguyên
\(\Rightarrow x-2014\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(x-2014=1\Rightarrow x=2015\)
\(x-2014=-1\Leftrightarrow x=2013\)
\(x-2014=5\Rightarrow x=2019\)
\(x-2014=-5\Rightarrow x=2009\)
\(KL:x\in\left\{2015;2013;2009;2019\right\}\)
\(M=\frac{5-x}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=-1+\frac{3}{x-2}\)
để M có GTNN \(\Leftrightarrow\)-1 + \(\frac{3}{x-2}\)max \(\Leftrightarrow\)\(\frac{3}{x-2}\)max \(\Leftrightarrow\)x - 2 min
\(\Rightarrow\)x - 2 = -1 \(\Rightarrow\)x = 1
Khi đó : \(M=\frac{5-1}{1-2}=-4\)
Vậy với x = 1 thì M có GTNN là -4
Để M đạt GTNN:
\(\Leftrightarrow\) \(\frac{3}{X-2}\) có GTNN
\(\Leftrightarrow\) \(\frac{3}{2-x}\) có GTLN
\(\Leftrightarrow\) 2 - x có GTNN
\(\Leftrightarrow\) x = 1 ( vì x\(\in\) Z và x < 2)
Lúc đó GTNN của M \(\frac{3}{1-2}\) - 1 = -4 (khi x = 1)