Tìm x và y biết \(\frac{x-y}{3}=\frac{x+2y}{x}=\frac{2x+y}{8}\) khác 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\Rightarrow\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(z+x\right)}\)
\(\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}\Rightarrow z\left(x+y\right)=x\left(y+z\right)\Rightarrow xz+yz=xy+xz\Rightarrow yz=xy\Rightarrow z=x\)
CM tương tự ta cũng có : \(x=y;y=z\)
\(\Rightarrow x=y=z\) Thay vào B ta được :
\(B=\frac{x^3+y^3+z^3}{x^2y+y^2z+z^2x}=\frac{x^3+x^3+x^3}{x^2x+x^2x+x^2x}=\frac{3x^3}{3x^3}=1\)
Bạn xét 2 trường hợp.
Nếu x+y+z=0 thì suy ra x+y=-z;y+z=-x;z+x=-y
Nếu x+y+z khác 0 thì áp dụng tính chất dãy tỉ số bằng nhau
Ta có: \(\frac{x-y}{3}=\frac{2x+y}{8}=\frac{\left(2x+y\right)-\left(x-y\right)}{8-3}=\frac{x+2y}{5}=\frac{x+2y}{x}\)
\(\Rightarrow x=5\)
Thay \(x=5\)vào biểu thức \(\frac{x-y}{3}=\frac{x+2y}{x}\)ta được
\(\frac{5-y}{3}=\frac{5+2y}{5}\)
\(\Rightarrow5\left(5-y\right)=3\left(5+2y\right)\)
\(\Rightarrow25-5y=15+6y\)
\(\Rightarrow5y+6y=25-15\)
\(\Rightarrow11y=10\)\(\Rightarrow y=\frac{10}{11}\)
Vậy \(x=5\)và \(y=\frac{10}{11}\)