K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

Ai trả lời:nhanh nhất,đúng nhất,hay nhất,đầy đủ nhất thì mk k cho nha

Các bạn trả lời nhanh giùm mk

Cảm ơn các bạn

24 tháng 11 2017

giả sử d = ƯCLN ( m , n ) với d \(\ge\) 1 thì m \(⋮\)d và n \(⋮\) d 

suy ra : 3m \(⋮\) d , 2n \(⋮\) d 

suy ra 3m - 2n = 1 \(⋮\) d 

Bởi vì d \(\ge\)1 mà 1 d thì d = 1, 

suy ra m và n nguyên tố cùng nhau

cho m n là số tự nhiên thỏa mãn m2-2020n2+2022 chia hết cho m,n chứng minh rằng m,n là hai số lẻ và nguyên tố cùng nhau  Giải (copy) Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4 và mn chia hết cho 4 suy ra m2-2023n2+2022 không chia hết cho mn (loại) nếu m,n khác tính chẵn lẻ thì m2- 2023n2+ 2022 lẻ và mn chẵn do đó m2-2023n2+2022 không chia hết cho mn (loại) Vậy m,n là những số lẻ  Gọi (m,n) = d => m2- 2023n2 ⋮...
Đọc tiếp

cho m n là số tự nhiên thỏa mãn m2-2020n2+2022 chia hết cho m,n chứng minh rằng m,n là hai số lẻ và nguyên tố cùng nhau 

Giải (copy)

Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4 và mn chia hết cho 4 suy ra m2-2023n2+2022 không chia hết cho mn (loại)

nếu m,n khác tính chẵn lẻ thì m2- 2023n2+ 2022 lẻ và mn chẵn do đó m2-2023n2+2022 không chia hết cho mn (loại)

Vậy m,n là những số lẻ 

Gọi (m,n) = d => m2- 2023n⋮ d2 ; mn ⋮ d2  mà m2- 2023n+ 2022 ⋮ mn nên 2022 ⋮ d2 

Mặt khác 2022 = 2.3.337 tức 2022 không có ước chính phương nào ngoài 1 do đó d2 = 1 => d = 1 => (m,n) =1 vậy m,n là hai số nguyên tố cùng nhau .

 

 

Em chưa hiểu tai sao 

Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4

thầy Cao Lộc phân tích cho em với ạ

 

 

 

2
19 tháng 6 2023

Cặp \(m=2\) , \(n=1\) vẫn thỏa \(m^2-2020n^2+2022⋮mn\)

19 tháng 6 2023

Để chứng minh rằng m và n là hai số lẻ và nguyên tố cùng nhau, ta cần thực hiện các bước sau đây:

Bước 1: Giả sử rằng m và n là hai số tự nhiên thỏa mãn m^2 - 2020n^2 + 2022 chia hết cho mn.

Bước 2: Ta sẽ chứng minh rằng m và n là hai số lẻ.

Giả sử rằng m là số chẵn, tức là m = 2k với k là một số tự nhiên. Thay thế vào biểu thức ban đầu, ta có:

(2k)^2 - 2020n^2 + 2022 chia hết cho 2kn

Simplifying the equation, we get:

4k^2 - 2020n^2 + 2022 chia hết cho 2kn

Dividing both sides by 2, we have:

2k^2 - 1010n^2 + 1011 chia hết cho kn

Do 2k^2 chia hết cho kn, vì vậy 2k^2 cũng chia hết cho kn. Từ đó, 1011 chia hết cho kn.

Bởi vì 1011 là một số lẻ, để 1011 chia hết cho kn, thì kn cũng phải là một số lẻ. Vì vậy, n cũng phải là số lẻ.

Do đó, giả sử m là số chẵn là không hợp lệ. Vậy m phải là số lẻ.

Bước 3: Chứng minh rằng m và n là hai số nguyên tố cùng nhau.

Giả sử rằng m và n không phải là hai số nguyên tố cùng nhau. Điều đó có nghĩa là tồn tại một số nguyên tố p chia hết cả m và n.

Vì m là số lẻ, n là số lẻ và p là số nguyên tố chia hết cả m và n, vì vậy p không thể chia hết cho 2.

Ta biểu diễn m^2 - 2020n^2 + 2022 dưới dạng phân tích nhân tử:

m^2 - 2020n^2 + 2022 = (m - n√2020)(m + n√2020)

Vì p chia hết cả m và n, p cũng phải chia hết cho (m - n√2020) và (m + n√2020).

Tuy nhiên, ta thấy rằng (m - n√2020) và (m + n√2020) không thể cùng chia hết cho số nguyên tố p, vì chúng có dạng khác nhau (một dạng có căn bậc hai và một dạng không có căn bậc hai).

Điều này dẫn đến mâu thuẫn, do đó giả sử ban đầu là sai.

Vậy ta có kết luận rằng m và n là hai số tự nhiên lẻ và nguyên tố cùng nhau.

29 tháng 10 2016

m ở đâu

29 tháng 10 2016

Không biết thế này có đúng không nhưng mình vẫn muốn hỏi

Gọi d là WCLN(2n+3, 3m+4); n thuộc N

Ta có: 2n+3 chia hết cho d; 3m+4 chia hết cho d

3(2n+3) chia hết cho d; 2(3m+4) chia hết cho d

nên (6m+9-6n+8)

=> d chia hết cho 1

=> d=1

2 tháng 1 2015

 Giả sử 
(7n+2,2n+1) =k với k# 3 
=> (7n+2, 3(2n+1)) =k (do k #3) 
=> [7n+2 -3(2n+1), 2n+1] =k 
=> (n-1, 2n+1) =k (*) 

Mặt khác k lẻ do 2n +1 lẻ 

Từ (*) => (2n+1, 2n-2) =k 
=> [2n+ 1, (2n+1) -(2n-2)] =k 
=> (2n+1,3) =k 

do k # 3 => k=1 

Từ đó suy ra với giá trị nào đó của n thì 2 số đã cho chỉ có ước chung duy nhất là k =3, còn lại là nguyên tố cùng nhau 

Ta thấy nếu n có dạng n=3k +1 thì 2n+1 và 7n+2 có ước chung là k =3 

=> n=3k và n=3k+2 thì 2 số đã cho nguyên tố cùng nhau 

Từ 11 -> 999 có 989 số, trong đó có 329 số chia cho 3 dư 1 (do ko tính số 10 theo đề bài) 

Như vậy còn lại 989 -329 = 660 số n để (2n+1) và (7n+2) nguyên tố cùng nhau

1 tháng 2 2021

\(d=\left(2n+1,\frac{n^2+n}{2}\right)=\left(2n+1,n^2+n\right)\text{vì }2n+1\text{ lẻ}\)

\(\Rightarrow2n^2+2n-2n^2-n\text{ chia hết cho d hay:}n\text{ chia hết cho d do đó: }2n+1-2n\text{ chia hết cho d }nên:\)

1 chia hết cho d nên: d=1.

ta có điều phải chứng minh.

  Giả sử 
(7n+2,2n+1) =k với k# 3 
=> (7n+2, 3(2n+1)) =k (do k #3) 
=> [7n+2 -3(2n+1), 2n+1] =k 
=> (n-1, 2n+1) =k (*) 

Mặt khác k lẻ do 2n +1 lẻ 

Từ (*) => (2n+1, 2n-2) =k 
=> [2n+ 1, (2n+1) -(2n-2)] =k 
=> (2n+1,3) =k 

do k # 3 => k=1 

Từ đó suy ra với giá trị nào đó của n thì 2 số đã cho chỉ có ước chung duy nhất là k =3, còn lại là nguyên tố cùng nhau 

Ta thấy nếu n có dạng n=3k +1 thì 2n+1 và 7n+2 có ước chung là k =3 

=> n=3k và n=3k+2 thì 2 số đã cho nguyên tố cùng nhau 

Từ 11 -> 999 có 989 số, trong đó có 329 số chia cho 3 dư 1 (do ko tính số 10 theo đề bài) 

Như vậy còn lại 989 -329 = 660 số n để (2n+1) và (7n+2) nguyên tố cùng nhau

Tick nhé Nguyen Thi Le Giang

22 tháng 1 2016

Giả sử 
(7n+2,2n+1) =k với k# 3 
=> (7n+2, 3(2n+1)) =k (do k #3) 
=> [7n+2 -3(2n+1), 2n+1] =k 
=> (n-1, 2n+1) =k (*) 

Mặt khác k lẻ do 2n +1 lẻ 

Từ (*) => (2n+1, 2n-2) =k 
=> [2n+ 1, (2n+1) -(2n-2)] =k 
=> (2n+1,3) =k 

do k # 3 => k=1 

Từ đó suy ra với giá trị nào đó của n thì 2 số đã cho chỉ có ước chung duy nhất là k =3, còn lại là nguyên tố cùng nhau 

Ta thấy nếu n có dạng n=3k +1 thì 2n+1 và 7n+2 có ước chung là k =3 

=> n=3k và n=3k+2 thì 2 số đã cho nguyên tố cùng nhau 

Từ 11 -> 999 có 989 số, trong đó có 329 số chia cho 3 dư 1 (do ko tính số 10 theo đề bài) 

Như vậy còn lại 989 -329 = 660 số n để (2n+1) và (7n+2) nguyên tố cùng nhau