cho tam giác ABC có \(\widehat{A}=75^o\) và \(\widehat{B}=45^o\) . Trên cạnh AC lấy điểm D sao cho \(\widehat{ABD}=30^o\) . Chứng minh rằng \(AD=\sqrt{3}DC\)
giải giúp mik nhé mik tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) TRONG \(\Delta ABC\)TA VẼ \(\Delta EBC\)VUÔNG CÂN TẠI E;\(\widehat{EBC}=45^o\)
TA CÓ \(EB^2+EC^2=BC^2\)
\(2EB^2=4;EB^2=2;EB=\sqrt{2}\)
VẬY \(AD=EB=\sqrt{2}\)
\(\Delta BAE=\Delta CAE\left(C-G-C\right)\)
\(\Rightarrow\widehat{BAE}=\widehat{CAE}=15^o\)
\(\widehat{ABC}=\left(180^o-30^o\right):2=75^o;\widehat{ABE}=75^o-45^o=30^o;\)VẬY\(\widehat{ABE}=\widehat{BED}=30^o\)
\(\Delta ABD=\Delta BAE\left(C-G-C\right)\Rightarrow\widehat{ABE}=\widehat{BAE}=15^o\)
B)
\(\Delta DBC\)CÓ\(\widehat{DBC}=75^o-15^o=60^o;\widehat{DCB}=75^o\)VÀ\(\widehat{BDC}=45^o\)
\(\Rightarrow\widehat{BDC}< \widehat{DBC}< \widehat{DCB}\left(45^o< 60^o< 75^o\right)\)do đó BC<CD<BD( QUAN HỆ BA CẠNH VÀ GÓC ĐỐI DIỆN)
ᴾᴿᴼシĐệ❦℘ℛℴ༻꧂
-hình bạn vẽ thiếu dữ kiện nha
Tam giác ABC cân tại A , bạn phải kí hiệu AB=AC chứ
Đường trung trực của cạnh BC cắt AB ở E.
Trên nửa mặt phẳng bờ CE không chứ A vẽ tam giác đều CEM
\(\widehat{ECB}=\widehat{EBC}=20^0;\widehat{BCM}=40^0\)
\(EB=EC=EM\Rightarrow\Delta EBM\)cân tại E
Ta có \(\widehat{BEM}=\widehat{BEC}-\widehat{MEC}=80^0\Rightarrow\widehat{EBM}=50^0\)
\(\Rightarrow\widehat{MBC}=30^0\)
Từ đó dễ dàng chứng minh \(\Delta CEA=\Delta MCB\left(g-c-g\right)\)
\(\Rightarrow AE=BC\)(hai cạnh tương ứng)
Mà BC = AD (gt) nên AD = AE \(\Rightarrow D\equiv E\)
\(\Rightarrow\widehat{BCD}=\widehat{BCE}=20^0\)
Vậy \(\widehat{BCD}=20^0\)