K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

Hình như đề sai rồi bạn ơi, ra số xấu lắm

22 tháng 2 2018

đúng đề bài 100% luôn

27 tháng 3 2018

\(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(P=\left(1+\frac{1}{3}+...+\frac{1}{2011}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}-1-\frac{1}{2}-...-\frac{1}{1006}\)

\(P=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)  (1)

\(Q=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)  (2)

\(\left(1\right)\left(2\right)\Rightarrow\frac{P}{Q}=\frac{\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}}{\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}}=1\)

19 tháng 5 2016

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)

\(S=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2011}+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)

\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1006}\right)\)

\(S=\frac{1}{1007}+\frac{1}{1008}+.....+\frac{1}{2012}+\frac{1}{2013}=P\)

=>S-P=0

=>(S-P)2016=0

23 tháng 2 2017

Sai rồi. Sai đề bài banhquaoeoho

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

2 tháng 4 2019

Biển Cửa Lò, chùa Thiên mụ, núi Ngũ Hành Sơn, chùa Cầu Hội An, kinh thành Huế, đèo Hải Vân

🐼🐼🐼

2 tháng 4 2019

Ta có:

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{2012}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{1006}\)

\(=\frac{1}{1007}+\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2012}+\frac{1}{2013}\left(1\right)\)

Mà \(P=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\left(2\right)\)

Từ (1) và (2)\(\Rightarrow S=P\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\)

Vậy...

7 tháng 4 2018

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)

\(=\left(1+\frac{1}{3}+......+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2012}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2012}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2012}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.......+\frac{1}{2012}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+........+\frac{1}{1006}\right)\)

\(=\frac{1}{1007}+\frac{1}{1008}+......+\frac{1}{2013}\)

\(=P\)

\(\Leftrightarrow S-P=0\)

\(\Leftrightarrow\left(S-P\right)^{2013}=0\)

20 tháng 3 2020

Cho mình hỏi sao lại trừ 2 lần (1/2 - 1/4 ....) thế ạ

13 tháng 9 2017

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(=1+\frac{1}{2}+...+\frac{1}{2012}+\frac{1}{2013}-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)

\(=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)

=> S = P => (S - P)2013 = 0

13 tháng 9 2017

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1006}\)

\(\Rightarrow S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)\(=P\)

\(\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\)

Tík cho mik nha!

1 tháng 2 2019

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)

\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}.....+\frac{1}{2012}\right)\)

\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-........-\frac{1}{1006}\)

\(S=\frac{1}{1007}+\frac{1}{1008}+.......+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}\)

\(\Rightarrow\left(S-P\right)^2=\left(\frac{1}{1007}+\frac{1}{1008}+....+\frac{1}{2012}+\frac{1}{2013}-\frac{1}{1007}-\frac{1}{1008}-....-\frac{1}{2012}-\frac{1}{2013}\right)^2\)

\(\Rightarrow\left(S-P\right)^2=0\)

Vậy \(\left(S-P\right)^2=0\)

1 tháng 2 2019

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)

\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)

\(S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2013}\)

\(\Rightarrow S-P=0\)

\(\Rightarrow\left(S-P\right)^{2013}=0\)