Cho tam giác ABC , 3 đường phân giác trong AE , BD, CF
a)Tính AC biết AB và BC tỉ lệ với 2 và 7 . BC - BA =1
b)CM : AF . BE . CD = BF . EC . AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta\)ABC có :
I là trọng tâm
=> I cách đều 3 cạnh của tam giác ABC ( định lí )
Hay IE = IF = ID .
b, Xét \(\Delta\)AEI và \(\Delta\)AFI có :
\(\widehat{A_1}=\widehat{A_2}\)( Vì AI là tia phân giác của góc A )
AI chung
=> \(\Delta\)AEI = \(\Delta\)AFI ( cạnh huyền - góc nhọn )
=> AE = AF .
cmtt : ta có : BF = BD ; CE = CD .
c, Ta có : AF + FB + AE +CE +CD + DB = 24
=> 2AF + 2CD + 2BD = 24
=> 2 . ( AF + CD + BD ) = 24
=> AF + CB = 12
Mà BC = 7 ( gt )
=> AF + 7 =12
=> AF = 5
Bài 1:
Áp dụng tính chất đường phân giác của tam giác ta có:
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{18}=\frac{2}{3}\)
\(\Rightarrow\frac{BD}{2}=\frac{DC}{3}=\frac{BD+DC}{2+3}=\frac{BC}{5}\Rightarrow\frac{BD}{BC}=\frac{2}{5}\)
Kẻ \(DK//BE\left(K\in AC\right)\text{ ta có:}\)
\(\frac{AE}{EK}=\frac{AI}{ID}=2;\frac{EK}{EC}=\frac{BD}{BC}=\frac{2}{5}\)
Do đó:\(\frac{AE}{EK}\cdot\frac{EK}{EC}=\frac{AE}{EC}=\frac{2}{5}.2=\frac{4}{5}\)
b)\(\text{Ta có:}\)
\(\frac{AE}{EC}=\frac{4}{5}\Rightarrow\frac{AE}{4}=\frac{EC}{5}=\frac{AE+EC}{4+5}=\frac{AC}{9}=\frac{18}{9}=2\)
\(\Rightarrow AE=8cm,EC=10cm\)
bn ơi bài 1 ý a) chỉ có thể tính tỉ lệ thôi ko tính đc ra số hẳn đâu