cho biểu thức so sánh: 16 div 5 <> 3;
hãy cho biết kết quả của phép tính trên
A.3 = 3 B. 1 < 3
C. Sai D. Đúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3/7 : 1 = 3/7
3/7 : 2/5 = 15/14
3/7 : 5/4 = 12/35
b) Trường hợp 1: 1 = 1
Trường hợp 2: 2/5 < 1
Trường hợp 3: 5/4 > 1
c) Trường hợp 1: 2/7 = 2/7
Trường hợp 2: 15/14 > 3/7
Trường hợp 3: 3/7 > 12/35
Kết luận: - Nếu số chia bằng 1 thì thương bằng 1
-Nếu số chia bé hơn 1 thì thương lớn hơn 1
-Nếu số chia lớn hơn 1 thì thương bé hơn một.
Bài 2:
a: a>=b
=>5a>=5b
=>5a+10>=5b+10
b: a>=b
=>-8a<=-8b
=>-8a-9<=-8b-9<-8b+3
Ta có 17^18>16^17
5^2=25<2^5=32 7đơn vị
2013>1990 23 đơn vị
Nên suy ra A=17^18+5^2+2013>B=16^17+2^5+1990
Ta có: \(B=\frac{1}{16}+\frac{2}{16^2}+\frac{3}{16^3}+...+\frac{2018}{16^{2018}}\)
\(\Rightarrow16B=1+\frac{2}{16}+\frac{3}{16^2}+....+\frac{2018}{16^{2017}}\)
\(\Rightarrow16B-B=15B=1+\frac{1}{16}+\frac{1}{16^2}+\frac{1}{16^3}+...+\frac{1}{16^{2017}}-\frac{2018}{16^{2018}}\)
Mà: \(A=1+\frac{1}{16}+\frac{1}{16^2}+\frac{1}{16^3}+...+\frac{1}{16^{2017}}\)
\(\Rightarrow16A=16+1+\frac{1}{16}+\frac{1}{16^2}+...+\frac{1}{16^{2016}}\)
\(\Rightarrow16A-A=16-\frac{1}{16^{2017}}\)
\(\Rightarrow A=\frac{16-\frac{1}{16^{2017}}}{15}\)
\(\Rightarrow15B=\frac{16-\frac{1}{16^{2017}}}{15}-\frac{2018}{16^{2018}}\)
\(\Rightarrow15B< \frac{16}{15}\)
\(\Rightarrow B< \frac{16}{15^2}< 1\)
\(\Rightarrow B^{2017}>B^{2018}\)
2/
a) Ta có:
\(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{9\cdot2}=\sqrt{18}\)
\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{4\cdot3}=\sqrt{12}\)
Mà: \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)
b) Ta có:
\(4\sqrt[3]{5}=\sqrt[3]{4^3\cdot5}=\sqrt[3]{320}\)
\(5\sqrt[3]{4}=\sqrt[3]{5^3\cdot4}=\sqrt[3]{500}\)
Mà: \(320< 500\Rightarrow\sqrt[3]{320}< \sqrt[3]{500}\Rightarrow4\sqrt[3]{5}< 5\sqrt[3]{4}\)
3/
a)ĐKXĐ: \(x\ne1;x\ge0\)
b) \(A=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
\(A=\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\)
\(A=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\)
\(A=1^2-\left(\sqrt{x}\right)^2\)
\(A=1-x\)
A