K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

a) 3/7 : 1 = 3/7 

3/7 : 2/5 = 15/14 

3/7 : 5/4 = 12/35

b) Trường hợp 1:   1 = 1

    Trường hợp 2:   2/5 < 1

    Trường hợp 3:   5/4 > 1

c) Trường hợp 1:   2/7 = 2/7

    Trường hợp  2:  15/14 > 3/7

    Trường hợp  3:   3/7 > 12/35

 Kết luận:  - Nếu số chia bằng 1 thì thương bằng 1

                 -Nếu số chia bé hơn 1 thì thương lớn hơn 1

                 -Nếu số chia lớn hơn 1 thì thương bé hơn một. 

Bài 2:

a: a>=b

=>5a>=5b

=>5a+10>=5b+10

b: a>=b

=>-8a<=-8b

=>-8a-9<=-8b-9<-8b+3

29 tháng 6 2017

lớp 8a3 nguyễn khuyến đúng ko

20 tháng 1 2019

Đáp án đúng : B

11 tháng 10 2018

Ta có 17^18>16^17

5^2=25<2^5=32 7đơn vị

2013>1990 23 đơn vị

Nên suy ra A=17^18+5^2+2013>B=16^17+2^5+1990

7 tháng 2 2020

Ta có: \(B=\frac{1}{16}+\frac{2}{16^2}+\frac{3}{16^3}+...+\frac{2018}{16^{2018}}\)

\(\Rightarrow16B=1+\frac{2}{16}+\frac{3}{16^2}+....+\frac{2018}{16^{2017}}\)

\(\Rightarrow16B-B=15B=1+\frac{1}{16}+\frac{1}{16^2}+\frac{1}{16^3}+...+\frac{1}{16^{2017}}-\frac{2018}{16^{2018}}\)

Mà: \(A=1+\frac{1}{16}+\frac{1}{16^2}+\frac{1}{16^3}+...+\frac{1}{16^{2017}}\)

\(\Rightarrow16A=16+1+\frac{1}{16}+\frac{1}{16^2}+...+\frac{1}{16^{2016}}\)

\(\Rightarrow16A-A=16-\frac{1}{16^{2017}}\)

\(\Rightarrow A=\frac{16-\frac{1}{16^{2017}}}{15}\)

\(\Rightarrow15B=\frac{16-\frac{1}{16^{2017}}}{15}-\frac{2018}{16^{2018}}\)

\(\Rightarrow15B< \frac{16}{15}\)

\(\Rightarrow B< \frac{16}{15^2}< 1\)

\(\Rightarrow B^{2017}>B^{2018}\)

7 tháng 2 2020

Cảm ơn bạn nhiều :D

10 tháng 8 2023

2/ 

a) Ta có:

\(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{9\cdot2}=\sqrt{18}\)

\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{4\cdot3}=\sqrt{12}\)

Mà: \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)

b) Ta có:

\(4\sqrt[3]{5}=\sqrt[3]{4^3\cdot5}=\sqrt[3]{320}\)

\(5\sqrt[3]{4}=\sqrt[3]{5^3\cdot4}=\sqrt[3]{500}\)

Mà: \(320< 500\Rightarrow\sqrt[3]{320}< \sqrt[3]{500}\Rightarrow4\sqrt[3]{5}< 5\sqrt[3]{4}\)

10 tháng 8 2023

3/

a)ĐKXĐ: \(x\ne1;x\ge0\)

b) \(A=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)

\(A=\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\)

\(A=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\)

\(A=1^2-\left(\sqrt{x}\right)^2\)

\(A=1-x\)