K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{ACB}=180^0-50^0-65^0=65^0\)

Xét ΔACB có \(\widehat{ABC}=\widehat{ACB}\)

nên ΔABC cân tại A

b: Xét ΔBMC và ΔCNB có 

MC=NB

\(\widehat{MCB}=\widehat{NBC}\)

BC chung

Do đó: ΔBMC=ΔCNB

c: Xét ΔNKB vuông tại K và ΔMHC vuông tại H có 

NB=MC

\(\widehat{NBK}=\widehat{MCH}\)

Do đó: ΔNKB=ΔMHC

Suy ra: NK=MH

Xét \(\Delta ABC\) có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( T/c tổng 3 góc 1 tam giác ) 

\(\Rightarrow\widehat{A}=180^0-\widehat{B}-\widehat{C}=180^0-70^0-50^0=60^0\)

Vậy \(\widehat{A}=60^0\) hay \(\widehat{BAC}=60^0\)

3 tháng 2 2021

Xét tam giác ABC có :

Góc B + Góc C + Góc A = 180 Độ

Thay B=70 độ, C = 50 độ:

70 độ + 50 độ + Góc A =180 Độ

=>Góc A = 60 độ

26 tháng 2 2018

Ta có: \(\widehat{ABC}=180^o-\left(70^o+50^o\right)=180^0-120^o=60^o\)

\(\Rightarrow\widehat{ACM}=\widehat{BCM}=30^o\)

\(\Rightarrow\widehat{BMN}=\widehat{BAC}+\widehat{MCA}=100^o\)

\(\Rightarrow\widehat{BMN}=180^o-\widehat{BMN}-\widehat{MBN}=40^o\)

\(\Rightarrow\widehat{BMN}=\widehat{MBN}\)

Kẻ \(MH\perp BC\)

\(\Rightarrow MK=\frac{1}{2}BN\)

\(\Delta MKB=\Delta BHM\left(ch-gn\right)\)( tự chứng minh )

\(\Rightarrow BK=MH\Rightarrow MC=BN\)hay \(BN=MC\)

Vậy BN = MC ( đpcm )

24 tháng 3 2018

sao 2 tam giác đó bằng nhau được ???

vẽ hình ra đi

13 tháng 8 2016

Theo hình thì thấy là BN < MC

10 tháng 4 2017

minh thay cau tra loi cua ban ay la dung

13 tháng 8 2016

\(\widehat{ABC}=180^0-70^0-50^0=60^0\)

\(\Rightarrow\widehat{ACM}=\widehat{MCB}=30^0\)

\(\Rightarrow\widehat{NMB}=\widehat{BAC}+\widehat{ACM}=100^0\)

\(\Rightarrow\widehat{MNB}=180^0-\widehat{NMB}-\widehat{MBN}=40^0=\widehat{MBN}\)

từ M kẻ MH  _|_ BC 

\(\Rightarrow MK=\frac{1}{2}BN\)  ( do sin \(30^0=\frac{1}{2}\) )

từ M kẻ MK_|_ BN

\(\Rightarrow MK=\frac{1}{2}BN\)  ( do tam giác MBN  cân tại M)

xét tam giác MKB và tam giác BHM ( cạnh huyền - góc nhọn)

=> BK=MH=>MC=BN(đpcm)

13 tháng 8 2016

Có : ACB = 180 - 70 - 50 = 60 (độ)

=> ACM = MCB = 30 (độ)

=> NMB = BAC + ACM = 100 (độ)

=> MNB = 180 - NMB - MBN = 40 độ = MBN

Từ M kẻ MH vuông BC => MH = 1/2 MC (do sin 30 = 1/2)

Từ M kẻ MK vuông BN = MK = 1/2 BN (do tam giác MBN cân tại M)

Xét tam giác MKB = tam giác BHM (cạnh huyền - góc nhọn)

=> BK = MH => MC = BN

  
17 tháng 3 2018

Có ABC = 180 - 70 - 50 = 60\(^o\)

=> ACM = MCB  = 30\(^o\)

=> NMB = BAC + ACM = 100\(^o\)

=> MNB = 180 - NMB  - MBN = 40\(^o\)= MBN

Từ M kẻ MH vuông BC => MH = \(\frac{1}{2}\)MC\((\)do sin 30 = \(\frac{1}{2}\)\()\)

Từ M kẻ MK vuông BN = MK = \(\frac{1}{2}\)BN\((\)do\(\Delta MBN\)cân tại M\()\)

Xét \(\Delta MKB=\Delta BHM\)\((\)cạnh huyền - góc nhọn \()\)

=> BK = MH => MC = BN

a: góc ABC=180-50-70=60 độ

b: Vì góc IBC=1/2*góc ABC

nên BI là phân giác của góc ABC

Vì góc ICB=1/2*góc ACB

nên CI là phân giác của góc ACB

c: Xét ΔBFI vuông tại F và ΔBDI vuông tại D có

BI chung

góc FBI=góc DBI

=>ΔBFI=ΔBDI

=>ID=IF
Xét ΔCDI vuông tại D và ΔCEI vuông tại E co

CI chung

góc DCI=góc ECI

=>ΔCDI=ΔCEI

=>ID=IE=IF

=>I là giao của 3 đường trung trực ΔDEF

24 tháng 11 2021

Ai giúp tui đi

24 tháng 11 2021

bạn viêt khó hiểu quá, bạn viết lại cho đúng nha

 

6 tháng 11 2023

loading...a) Do AD là tia phân giác của ∠BAC (gt)

⇒ ∠BAD = ∠BAC : 2

= 60⁰ : 2

= 30⁰

∆ABD có:

∠BAD + ∠ABD + ∠ADB = 180⁰ (tổng ba góc trong ∆ABD)

⇒ ∠ADB = 180⁰ - ∠BAD - ∠ABD

= 180⁰ - 30⁰ - 50⁰

= 100⁰

b) Do 30⁰ < 50⁰ < 100⁰

⇒ ∠BAD < ∠ABD < ∠ADB

⇒ BD < AD < AB (quan hệ giữa cạnh và góc đối diện trong tam giác)

17 tháng 3 2018

abc= 30 độ vì tổng 3 góc của 1 tam giác

=> AC>AB

=> bước sau tự lm

30 tháng 9 2018

sao ko làm hết luôn bn