K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2019

a) Xét ΔABD vuông tại D

=>^A+^ABD=90°(1)

Xét ΔACE vuông góc tại E

=>^A+^ACE=90°(2)

Từ (1) và (2)

=>^ABD=^ACE(đpcm)

b) Xét ΔABC có:

^BAC+^ABC+^ACB=180°(đl tổng ba góc tam giác) 

=>^BAC=180°-65°-45°=70°

Xét ΔCAE vuông tại E

=>^CAE+^ACE=90°

=>^ACE=90°-70°=20°

Xét ΔCHD vuông tại D

=>^CHD+^DCH=90°

=>^CHD=70°

=>^CHD+^BHC=180°

=>^BHC=110°

9 tháng 5 2022

lm đc mà lừi lm hết qué:((

Tái bút : câu c, d chắc ko lm đc:))

không làm mà đòi có ăn thì ăn đb, ăn cức nhé bạn

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)

b) Xét ΔBEC vuông tại E và ΔCDB vuông tại D có 

BC chung

\(\widehat{EBC}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBEC=ΔCDB(cạnh huyền-góc nhọn)

Suy ra: \(\widehat{BCE}=\widehat{DBC}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(Định lí đảo của tam giác cân)

\(\Leftrightarrow IB=IC\)(hai cạnh bên)

Xét ΔBAI và ΔCAI có 

BA=CA(ΔABC cân tại A)

AI chung

IB=IC(cmt)

Do đó: ΔBAI=ΔCAI(c-c-c)

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)

c) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: IB=IC(cmt)

nên I nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy AI là đường trung trực của BC(đpcm)

17 tháng 2 2021

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-ke-bd-vuong-goc-voi-ac-va-ke-ce-vuong-goc-voi-ab-bd-va-ce-cat-nhau-tai-i-chung-minh-goc-bai-goc-cai-ai-la-trung-truc.69327720128

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE và AD=AE

b: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có 

BC chung

EB=DC

Do đó: ΔEBC=ΔDCB

Suy ra: \(\widehat{ECB}=\widehat{DBC}\)

=>\(\widehat{HBC}=\widehat{HCB}\)

hay ΔHBC cân tại H

c: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: HB=HC

nên H nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AH là đường trung trực của BC

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc A chung

=>ΔADB=ΔAEC

=>góc ABD=góc ACE

b: góc HBC+góc ABD=góc ABC

góc HCB+góc ACE=góc ACB

mà góc ABD=góc ACE; góc ABC=góc ACB

nên góc HBC=góc HCB

=>ΔBHC cân tại H

=>HB=HC>HD