Cho hàm số: y = f(x) = \(a\cdot x^2+b\cdot x+c\) (với a,b,c \(\in\) Q)
a.Tính f(-2); f(3)
b. CMR f(-2) . f(3) \(\le\)0 biết 13a+b+2c = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x_1\right)=ax_1\) ; \(f\left(x_2\right)=ax_2\) ; \(f\left(x_1x_2\right)=ax_1x_2\)
Để \(f\left(x_1\right)f\left(x_2\right)=f\left(x_1x_2\right)\)
\(\Leftrightarrow ax_1.ax_2=ax_1x_2\)
\(\Leftrightarrow a^2x_1x_2=ax_1x_2\)
\(\Leftrightarrow a^2=a\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=1\end{matrix}\right.\)
Vậy \(a=1\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
Chắc đè trên bạn ghi nhầm là:
\(a.c+b^2-2.x^4.y^4=0\)
Ta có \(b=x^2.y^2\)
=> \(b^2=\left(x^2.y^2\right)^2=x^4.y^4\) (1)
Từ (1)
=>\(a.c+b^2-2.x^4.y^4\)
\(=\left(x^3.y\right).\left(x.y^3\right)+b^2-2.b^2\)
\(=\left(x^3.x\right).\left(y.y^3\right)+b^2-2.b^2\)
\(=x^4.y^4+b^2-2.b^2\)
\(=b^2+b^2-2.b^2\)
\(=2.b^2-2b^2\)
\(=0\)
=>\(a.c+b^2-2.x^4.y^4=0\)\(\left(đpcm\right)\)
Vậy nếu \(a=x^3.y;b=x^2.y^2;c=x.y^3\)thì với mọi số hữu tỉ x:y ta cũng có: \(a.c+b^2-2.x^4.y^4=0\)
bài 1
a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))
=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)
=\(-x^3\).\(y^2z^2\)
b)-54\(y^2\).b.x
=(-54.b).\(y^2x\)
=-54b\(y^2x\)
c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)
=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)
=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)
=\(\frac{-1}{2}x^6y^3\)
Bài 3:
a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)
\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
b)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=-8\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)
\(f\left(-1\right)=24\)
y = f(x) = a . x2 + b . x + c ( a , b , c ∈ Q )
+) f(-2) = a . ( -2 )2 + b . ( -2 ) + c
= a . 4 + b . ( -2 ) + c
= 2 ( 2a - b + c ) ⇒ y = 2( 2a - b + c )
+) f(-3) = a . ( -3 )2 + b . ( -3 ) + c
= a . 9 - b . 3 + c
= 3 ( 3a - b + c ) ⇒ y = 3( 3a - b + c )