cho các số a.b.c;d nguyên dương đôi một khác nhau t/m:
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
cmr abcd là 1 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3.
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí)
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3
b) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5.
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4.
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí)
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí).
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5
Mình không chắc câu này lắm nhưng thôi giải dùm bạn vậy :((
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
\(\Leftrightarrow\)\(1+\frac{a}{a+b}+1+\frac{b}{b+c}+1+\frac{c}{c+d}+1+\frac{d}{d+a}=6\)
\(\Leftrightarrow\)\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)
\(\Leftrightarrow\)\(1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\)\(\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\)\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\)\(b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)\)
\(\Leftrightarrow\)\(abc-acd+bd^2-b^2d=0\)
\(\Leftrightarrow\)\(\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow\)\(ac-bd=0\Leftrightarrow ac=bd\left(b\ne d\right)\)
Vậy bạn tự kết luận nha
\(\Leftrightarrow1+\frac{a}{a+b}+1+\frac{b}{b+c}+1+\frac{c}{c+d}+1+\frac{d}{d+a}=6\)
\(\Leftrightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{d}{d+a}=2\)
\(\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b\left(b+c\right)-b\left(a+b\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(d+a\right)-d\left(c+d\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(c+d\right)\left(d+a\right)+d\left(a-c\right)\left(a+b\right)\left(b+c\right)=0\)
\(\Leftrightarrow b\left(c-a\right)\left(c+d\right)\left(d+a\right)-d\left(c-a\right)\left(a+b\right)\left(b+c\right)=0\)
\(\Leftrightarrow b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\)
\(\Leftrightarrow\left(bc+bd\right)\left(d+a\right)-\left(da+db\right)\left(b+c\right)=0\)
\(\Leftrightarrow bcd+bca+bd^2+bda-abd-adc-db^2-dbc=0\)
\(\Leftrightarrow bca-acd+bd^2-b^2d=0\)
\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)
\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow ac-bd=0\)
\(\Leftrightarrow ac=bd\)
\(\Leftrightarrow\left(ac\right)^2=abcd\)\(\left(đpcm\right)\)
dành cho người không hiểu bài trên
\(#huybip#\)