tìm các chữ số a;b;c bíêt ab.ac.7=abbc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) để a4b ⋮ 2 và 5
thì b=0
để a40 ⋮ 3 và 9 thì tổng các chữ số phải ⋮ 9
⇒ \(\left(a+4\right)\text{⋮}9\)
⇒ \(a=5\)
Vậy a=5, b=0
c) để 2a5b ⋮5 thì b=0 hoặc 5
Nếu b=0 thì a=2
Nếu b=5 thì a=7
Vậy (a,b)=\(\left\{\left(2;0\right);\left(7;5\right)\right\}\)
Bài 7:
a: \(24=2^3\cdot3\)
b: \(75=5^2\cdot3\)
c: \(300=2^2\cdot3\cdot5^2\)
d: \(520=2^3\cdot5\cdot13\)
Bài 6:
a:
Sửa đề: 56ab
Đặt \(X=\overline{56ab}\)
X chia hết cho 2 và 5 nên X chia hết cho 10
=>X có tận cùng là 0
=>b=0
=>\(X=\overline{56a0}\)
X chia hết cho 3 và 9 nên X chia hết cho 9
=>5+6+a+0 chia hết cho 9
=>a+11 chia hết cho 9
=>a=7
=>X=5670
b: Đặt \(X=\overline{3ab}\)
X chia hết cho 2 và 5 nên X chia hết cho 10
=>b=0
=>\(X=\overline{3a0}\)
X chia hết cho 3 và 9 nên X chia hết cho 9
=>3+a+0 chia hết cho 9
=>a=6
=>X=360
c: Đặt \(X=\overline{1a2b}\)
X chia hết cho 5 nên b=0 hoặc b=5
TH1: b=0
=>\(X=\overline{1a20}\)
X chia hết cho 9
=>1+a+2+0 chia hết cho 9
=>a+3 chia hết cho 9
=>a=6
=>X=1620
TH2: b=5
=>\(X=\overline{1a25}\)
X chia hết cho 9
=>1+a+2+5 chia hết cho 9
=>a+8 chia hết cho 9
=>a=1
=>X=1125
a: 0,1246
b:
Sửa đề: Có tích các chữ số bằng 48
Số cần tìm là 8,321
a tích các chữ số có 1 chữsố bằng 120 là
120 = 3x5x8
vậy số tự nhiên bé nhất có tích là 120 là 385
nhớ kic cho mik nhé
nhưng bài này sai thôi tớ ko biết đâu
- ta có 10a + b +10b +a =176
<=> 10(a+b) +a +b =176
<=> 11(a+b) =176
<=> a + b =16
=> a=7 và b=9 hoặc a=9 và b=7 (vì a khác b)
- Theo đề ta có : c+b=c =>b=0
Vì ac và cb là số có hai chữ số => a=1
=> 10 +c +10c = 100 + c
=> 10c = 90
=>c=9
Vậy số cần tìm là 109
Bài 1:
Giải:
Ta có:
\(\overline{ab}+\overline{bc}=176\)
\(\Rightarrow10a+b+10b+a=176\)
\(\Rightarrow11a+11b=176\)
\(\Rightarrow11\left(a+b\right)=176\)
\(\Rightarrow a+b=16\)
Vì a, b là chữ số nên ta có bảng sau:
a | 7 | 9 | 8 |
b | 9 | 7 | 8 |
Vậy các cặp số \(\left(a;b\right)\) là: \(\left(7;9\right);\left(9;7\right);\left(8;8\right)\)
ab.ac.7=abbc
=>ab.ac.7=100.ab+bc
=>bc=ab.ac.7-100.ab
=>bc=(ac.7-100).ab
=>ac.7-100<10
=>ac.7<110
=>ac<16
=>a=1
=>ac.7-100=1c.7-100=7c-30
=7c-30<10
=>7c<40
=>c<6
và 7c-30>0
=>7c>30
=>c>4
=>c=5
=>1c.7-100=15.7-100=5
=>ab.5=bc
=>1b.5=b5
=>50+5b=10.b+5
=>45=5b
=>b=9
vậy (a;b;c)=(1;9;5)
Có abbc < 10.000
=> ab.ac.7 < 10000
=> ab.ac < 1429
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0)
=> a0 < 38
=> a <= 3
+) Với a = 3 ta có
3bbc = 3b.3c.7
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại
+)Với a = 2 ta có
2bbc = 2b.2c.7
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1)
=> a chỉ có thể = 1
Ta có 1bbc = 1b.1c.7
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10)
=> 1c.7 < 110 => 1c < 16 => c < 6
vậy c chỉ có thể = 5
ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105
<=> 100.1b + b5 = 1b.105b
<=> b5 = 5.1b
<=> 10b + 5 = 5.(10+b)
=> b = 9
vậy số abc là 195