cho các số khác 0 là a;b;c thõa mãn b^2=ac. Chứng minh: a/c=(a+2015b)^2/(b+2015c)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tập hợp A là : {3;6;9;12;15;18;21;24;27}
Tập hợp B là : {9;18;27}
`Answer:`
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+ax}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(1\right)\)
Theo đề ra, có: \(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)
\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+cxy}=\frac{xyz}{cxy+ayz}\)
\(\Rightarrow ayz+bxz=bxz+cxy=cxy+ayz\)
\(\Rightarrow\hept{\begin{cases}ayz+bxz=bxz+cxy\\ayz+bxz=cxy+ayz\\bxz+cxy=cxy+ayz\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}ayz=cxy\\bxz=cxy\\bxz=ayz\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}az=cx\\bz=cy\\bx=ay\end{cases}}\left(2\right)\)
Thế (2) và (1): \(\frac{xy}{2ay}=\frac{yz}{2bz}=\frac{xz}{2cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right)\)
\(\Rightarrow\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}=\frac{\left(x^2+y^2+z^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}\)
\(\Rightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{1}{4}\)
Thế (3) vào (2): \(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{1}{4}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{a}{2}\\y=\frac{b}{2}\\z=\frac{c}{2}\end{cases}}\)