Cho: \(\dfrac{3a-2b}{3}\) = \(\dfrac{5b-6c}{4}\) = \(\dfrac{4c-5a}{5}\). Tìm a;b;c biết 3a + b - 2c = -24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
:)) chiều thi bây h mới làm :>>>> siêng như t :D
\(\frac{5\left(3a-2b\right)}{15}=\frac{2.\left(5b-6c\right)}{8}=\frac{3.\left(4c-5a\right)}{15}=\frac{15a-10b}{15}=\frac{10b-12c}{8}=\frac{12c-15a}{15}\)
áp dụng tc DTSBN. có:
\(\frac{3a-2b}{3}=\frac{5b-6c}{4}=\frac{4c-5a}{4}=\frac{15a-10b}{15}=\frac{10b-12c}{8}=\frac{12c-15a}{15}=\frac{0}{15+8+15}=0\)
đến đây tự làm tiếp :]
gợi ý:
*) xét 3a=2b,5b=6c,4c=5a =>....
mình làm tiếp phần của bạn Boul đẹp trai_tán gái đổ 100%
\(\Rightarrow\hept{\begin{cases}3a-2b=0\\5b-6c=0\\4c-5a=0\end{cases}\Rightarrow\hept{\begin{cases}3a=2b\\5b=6c\\4c=5a\end{cases}\Rightarrow}\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}=\frac{a}{4}=\frac{b}{6}\\\frac{b}{6}=\frac{c}{5}\\\frac{c}{5}=\frac{a}{4}\end{cases}}}\)
\(\Rightarrow\frac{a}{4}=\frac{b}{6}=\frac{c}{5}\Rightarrow\frac{3a}{12}=\frac{b}{6}=\frac{2c}{10}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{3a}{12}=\frac{b}{6}=\frac{2c}{10}=\frac{3a+b-2c}{12+6-10}=\frac{24}{8}=3\)
\(\Rightarrow+a=12\)
\(+b=18\)
\(+c=15\)
Vậy ..................
https://loigiaihay.com/nguoi-chan-cuu-va-su-tu-c121a19561.html
\(\dfrac{3a-2b}{5}\)=\(\dfrac{2c-5a}{3}\)=\(\dfrac{5b-3c}{2}\)=\(\dfrac{15a-10b}{5}\)=\(\dfrac{6c-15a}{9}\)=\(\dfrac{10b-6c}{2}\)
Suy ra: \(\dfrac{15a-10b+6c-15a+10b-6c}{25+9+4}\)=\(\dfrac{0}{38}\)=0
Suy ra: 3a=2b\(\Leftrightarrow\)\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)(1)
2c=5a\(\Leftrightarrow\)\(\dfrac{c}{5}\)=\(\dfrac{a}{2}\)(2)
Từ (1) và (2) suy ra: \(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{5}\)
Theo tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{5}\)=\(\dfrac{a+b+c}{2+3+5}\)=\(\dfrac{-50}{10}\)=-5
Tự làm nốt nha.
Đúng thì tick cho mk nha
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-5c}{2}=\dfrac{5\left(3a-2b\right)\left(2c-5a\right)}{5.5+3.3+}=\dfrac{-10b+6c}{34}=\dfrac{-5b+3c}{17}\)
\(\Leftrightarrow\dfrac{5b-3c}{2}=\dfrac{-5b+3c}{17}\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{3c}{5}\\a=\dfrac{2c}{5}\end{matrix}\right.\)
Mà \(a+b+c=-50\)
\(\Leftrightarrow\dfrac{2c}{5}+\dfrac{3c}{5}+c=-50\)
\(\Leftrightarrow2c=-50\)
\(\Leftrightarrow c=-25\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-10\\b=-15\end{matrix}\right.\)
Vậy ...
\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\leftrightarrow\dfrac{5\left(3a-2b\right)}{25}=\dfrac{3\left(2c-5a\right)}{9}=\dfrac{2\left(5b-3c\right)}{4}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{5\left(3a-2b\right)}{25}=\dfrac{3\left(2c-5a\right)}{9}=\dfrac{2\left(5b-3c\right)}{4}=\dfrac{5\left(3a-2b\right)+3\left(2c-5a\right)+2\left(5b-3c\right)}{25+9+4}=0\)\(\Rightarrow\left\{{}\begin{matrix}3a-2b=0\\2c-5a=0\\5b-3c=0\end{matrix}\right.\)
⇔ 15a= 10b = 6c ⇔ \(\dfrac{a}{\dfrac{1}{15}}=\dfrac{b}{\dfrac{1}{10}}=\dfrac{c}{\dfrac{1}{6}}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{\dfrac{1}{15}}=\dfrac{b}{\dfrac{1}{10}}=\dfrac{c}{\dfrac{1}{6}}=\dfrac{a+b+c}{\dfrac{1}{15}+\dfrac{1}{10}+\dfrac{1}{6}}=-\dfrac{50}{\dfrac{1}{3}}=-150\)
\(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=-15\\c=-25\end{matrix}\right.\)