K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

\(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=4a-2b+c\)

\(f\left(3\right)=a.3^2+b.3+c=9a+3b+c\)

\(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\Rightarrow f\left(-2\right).f\left(3\right)\le0\)

17 tháng 1 2021

f(0) = 1

\(\Rightarrow\) a.02 + b.0 + c = 1 

\(\Rightarrow\) c = 1

Vậy hệ số a = 0; b = 0; c = 1

f(1) = 2

\(\Rightarrow\) a.12 + b.1 + c = 2

\(\Rightarrow\) a + b + c = 2

Vậy hệ số a = 1; b = 1; c = 1

f(2) = 4

\(\Rightarrow\) a.22 + b.2 + c = 4

\(\Rightarrow\) 4a + 2b + c = 4

Vậy hệ số a = 4; b = 2; c = 1

Chúc bn học tốt! (chắc vậy :D)

 

4 tháng 2 2021

\(f\left(-1\right)=2\Rightarrow-a+b-c+d=2\\ f\left(0\right)=1\Rightarrow d=1\\ f\left(1\right)=7\Rightarrow a+b+c+d=7\\ f\left(\dfrac{1}{2}\right)=3\Rightarrow\dfrac{1}{8}a+\dfrac{1}{4}b+\dfrac{1}{2}c+d=3\)

\(d=1\Rightarrow-a+b-c=1;a+b+c=6\\ \Rightarrow2b=7\\ \Rightarrow b=\dfrac{7}{2}\\ \Rightarrow\dfrac{1}{8}a+\dfrac{7}{8}+\dfrac{1}{2}c=2\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{4}a+\dfrac{7}{4}+c\right)=2\\ \Rightarrow\dfrac{1}{4}a+\dfrac{7}{4}+c=4\\ \Rightarrow a+7+4c=16\\ \Rightarrow a+4c=9;a+c=6-\dfrac{7}{2}=\dfrac{5}{2}\\ \Rightarrow3c=\dfrac{13}{2}\Rightarrow c=\dfrac{13}{6}\\ \Rightarrow a=\dfrac{5}{2}-\dfrac{13}{6}=\dfrac{1}{3}\)

Vậy \(\left(a;b;c;d\right)=\left(\dfrac{1}{3};\dfrac{7}{2};\dfrac{13}{6};1\right)\)

NV
16 tháng 4 2022

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{ax+1}-\sqrt[]{1-bx}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{ax}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{bx}{1+\sqrt[]{1-bx}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{a}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{b}{1+\sqrt[]{1-bx}}\right)=\dfrac{a}{3}+\dfrac{b}{2}\)

Hàm liên tục tại \(x=0\) khi:

\(\dfrac{a}{3}+\dfrac{b}{2}=3a-5b-1\Leftrightarrow8a-11b=3\)

28 tháng 10 2018

Dễ xét 2 Trường hợp là ok :))))

Ta có: \(f\left(x\right)=ã+b\left(a\ne0\right)\left(x\in R\right)\)

TH1: Khi a > 0

* Cho x1 < x2

\(\Leftrightarrow ax_{ }_1< ax_2\)\(\Leftrightarrow ax_1+b< ax_2+b\)

\(\Leftrightarrow f\left(x_1\right)< f\left(x_2\right)\)

TH2: Khi a < 0

* Cho x1 < x2

\(\Leftrightarrow ax_1>ax_2\Leftrightarrow ax_1+b>ax_2+b\)

\(\Leftrightarrow f\left(x_1\right)>f\left(x_2\right)\)

Vậy hàm số trên đồng biến khi a > 0 với mọi \(x\in R\)

Nghịch biến khi a < 0 với mọi \(x\in R\)

28 tháng 10 2018
Đồng biến
14 tháng 3 2020

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(x-1\right)=a\left(x-1\right)^2+b\left(x-1\right)+c\)

\(\Rightarrow f\left(x\right)-f\left(x-1\right)=ax^2+bx+c-ax^2+2ax-a-bx+b-c=x\)

\(\Leftrightarrow2ax-a+b-x=0\)

\(\Leftrightarrow\left(2a-1\right)x+b-a=0\)

\(\Leftrightarrow\hept{\begin{cases}2a-1=0\\b-a=0\end{cases}\Leftrightarrow}a=b=\frac{1}{2}\)

\(\)và Hàm số đúng với mọi giá trị của \(c\)

Vậy \(a=b=\frac{1}{2};c\in R\)