cho \(a\ge1;b\ge9;c\ge16\) thỏa mãn abc=1152.
tìm giá trị nhỏ nhất của \(P=bc\sqrt{a-1}+ac\sqrt{b-9}+ab\sqrt{c-16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT\ge\dfrac{1}{\left(a^2+1\right)-1}+\dfrac{1}{\left(b^2+1\right)-1}+\dfrac{1}{\left(c^2+1\right)-1}+4-\dfrac{4}{ab+1}+4-\dfrac{4}{bc+1}+4-\dfrac{4}{ca+1}\)
\(VT\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{4}{ab+1}-\dfrac{4}{bc+1}-\dfrac{4}{ca+1}+12\)
Mặt khác \(a;b;c\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab+1\ge a+b\) (và tương tự...)
\(\Rightarrow VT\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+12\)
\(VT\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+1+1+1+9\)
\(VT\ge\left(\dfrac{2}{a+b}-1\right)^2+\left(\dfrac{2}{b+c}-1\right)^2+\left(\dfrac{2}{c+a}-1\right)^2+9\ge9\)
a p dg côsi \(a\sqrt{b-1}=a.1.\sqrt{b-1}\le a.\dfrac{1+b-1}{2}=\dfrac{ab}{2}\)
ttuong tu \(b\sqrt{a-1}\le\dfrac{ab}{2}\)
nên vt\(\le ab\)
dau = xảy ra a=b=2
Ta có \(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\Leftrightarrow a+b=a-1+2\sqrt{\left(a-1\right)\left(b-1\right)}+b-1\Leftrightarrow2=2\sqrt{\left(a-1\right)\left(b-1\right)}\Leftrightarrow\sqrt{\left(a-1\right)\left(b-1\right)}=1\Leftrightarrow\left(a-1\right)\left(b-1\right)=1\Leftrightarrow ab-a-b+1=1\Leftrightarrow a+b=ab\)Vậy nếu \(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\) thì a+b=ab
\(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\left(a\ge1;b\ge1\right)\\ \Leftrightarrow a+b=a-1+b-1+2\sqrt{\left(a-1\right)\left(b-1\right)}\\ \Leftrightarrow a+b=a+b-2+2\sqrt{\left(a-1\right)\left(b-1\right)}\\ \Leftrightarrow2=2\sqrt{\left(a-1\right)\left(b-1\right)}\\ \Leftrightarrow1=\sqrt{a-1}\sqrt{b-1}\\ \Leftrightarrow1=\left(a-1\right)\left(b-1\right)\\ \Leftrightarrow1=ab-a-b-1\\ \Leftrightarrow ab=a+b\)
Ta có: \(\frac{1+ab}{1+a^2}+\frac{1+ab}{1+b^2}=\left(1+ab\right)\left(\frac{1}{1+a^2}+\frac{1}{1+b^2}\right)\)
mà \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+a^2+b^2}\)( Áp dụng BĐT phụ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\))
Mặt khác: \(a^2+b^2\ge2ab\)
=> \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+2ab}=\frac{2}{1+ab}\)
=> \(\left(1+ab\right)\left(\frac{1}{1+a^2}+\frac{1}{1+b^2}\right)\ge\left(1+ab\right)\left(\frac{2}{1+ab}\right)=2\)(đpcm)
Chứng minh bằng biến đổi tương đương :
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+ab}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+ab}\right)\ge0\)
\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\left(\frac{a-b}{1+ab}\right)\left(\frac{b}{1+b^2}-\frac{a}{1+a^2}\right)\ge0\)
\(\Leftrightarrow\frac{a-b}{1+ab}.\frac{\left(a-b\right)\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(ab+1\right)\left(a^2+1\right)\left(b^2+1\right)}\ge0\)
Vì \(a\ge1,b\ge1\) nên \(ab-1\ge0\) . Mặt khác vì \(\left(a-b\right)^2\ge0\) nên ta có điều phải chứng minh.
Cách khác:
\(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+ab}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+ab}\right)\ge0\)
\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)\left[b\left(1+a^2\right)-a\left(1+b^2\right)\right]}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\) (luôn đúng).
\(\Leftrightarrow\left(2+a^2+b^2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow2+2ab+a^2+b^2+ab\left(a^2+b^2\right)\ge2+2a^2+2b^2+2a^2b^2\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\) (luôn đúng với mọi \(a\ge1;b\ge1\))
15 x 28 =