K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

a vừa là ước vừa là bội của b thì chắc chắn |a|=b hay a=b hoặc a=-b 
có thể chứng minh đơn giản như sau: giả sử a= bx và b=ay ( với x ; y là 2 số nguyên) 
thế b=ay vào a=bx ta được: a= axy => xy=1 vì x và y nguyên nên 
x=1 và y=1 hoặc x=-1 và y=-1 thay x và y vào điều giả sử ta được a=b hoặc a=-b

AH
Akai Haruma
Giáo viên
24 tháng 6

Lời giải:

Nếu $A=p^2$ với $p$ là số nguyên tố thì $A$ có các ước: $1, p, p^2$

$\Rightarrow A$ có 3 ước.

$\Rightarrow A$ có số lượng ước là 1 số lẻ.

10 tháng 11 2018

Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1

Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.

24 tháng 6 2019

trả lời 

xl a 

e chưa làm 

bài này

24 tháng 6 2019

Giả sử \(\sqrt{a}\) là số hữu tỉ thì \(\sqrt{a}\) viết được thành \(\sqrt{a}=\frac{m}{n}\) với m, n \(\in\) N, (n \(\ne\) 0) và ƯCLN (m, n) = 1

Do a không phải là số chính phương nên \(\frac{m}{n}\) không phải là số tự nhiên, do đó n > 1.

Ta có m2 = an2. Gọi p là một ước nguyên tố của n thì m2 \(⋮\)p, do đó m\(⋮\) p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1.

Vậy\(\sqrt{a}\) là số vô tỉ.

3 tháng 1 2017

Xét số hữu tỉ a/b, có thể coi b > 0.

Nếu a, b khác dấu thì a < 0 và b > 0.

Suy ra (a/b) < (0/b) = 0 tức là a/b âm.

22 tháng 8 2017

Xét số hữu tỉ a/b, có thể coi b > 0.

Nếu a, b cùng dấu thì a > 0 và b > 0.

Suy ra (a/b) > (0/b) = 0 tức là a/b dương.

19 tháng 1 2017

+ Nếu \(a\)\(;\)\(b\) không chia hết cho 3  \(\Rightarrow\) \(a^2;\)\(b^2\)chia 3 dư 1
khi đó \(a^2+b^2\) chia 3 dư 2  \(\Rightarrow\)\(c^2\) chia 3 dư 2  (vô lý)
 \(\Rightarrow\)trường hợp  \(a\)\(b\) không chia hết cho 3 không xảy ra \(\Rightarrow\) \(abc\)\(⋮\)\(3\)                                      \(\left(1\right)\)

+ Nếu \(a\)\(;\)\(b\) không chia hết cho 5 \(\Rightarrow\)\(a^2\) chia 5 dư 1 hoặc 4 cà \(b^2\) chia 5 dư 1 hoặc 4

  • Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 1  \(\Rightarrow\) \(c^2\) chia 5 dư 2            (vô lí) 
  • Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 4  \(\Rightarrow\) \(c^2\) chia 5 dư 0  \(\Rightarrow\) \(c\)\(⋮\)\(5\) 
  • Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 1  \(\Rightarrow\) \(c^2\) chia 5 dư 0  \(\Rightarrow\) \(c\) \(⋮\)\(5\)
  • Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 4  \(\Rightarrow\) \(c^2\) chia 5 dư 3            (vô lí).                                               Vậy ta luôn tìm được một giá trị của \(a,\)\(b,\)\(c\)thỏa mãn \(abc\)\(⋮\)\(5\)                                               \(\left(2\right)\)

+ Nếu  \(a,\)\(b,\)\(c\) không chia hết cho 4  \(\Rightarrow\) \(a^2,\)\(b^2,\)\(c^2\) chia  8 dư 1 hoặc 4
khi đó \(a^2+b^2\) chia  8 dư \(0,\)\(2\)hoặc
\(\Rightarrow\) c2:5 dư 1,4. vô lý => a hoặc b hoặc c chia hết cho 4                             (3)
Từ (1) (2) và (3) => abc chia hết cho 60