Cho a, b, c > 0 TM \(a\le1;b\le2\) và a + b + c = 6. CMR : (a+1)(b+1)(c+1) \(\ge\)4abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BĐT phụ: \(a^5+b^5\ge a^2b^2\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^2+ab+b^2\right)\ge0\)*đúng*
\(\Rightarrow a^5+b^5+ab\ge a^2b^2\left(a+b\right)+ab=ab\left(ab\left(a+b\right)+1\right)\)
\(\Rightarrow\dfrac{ab}{a^5+b^5+ab}\ge\dfrac{ab}{ab\left(ab\left(a+b\right)+1\right)}=\dfrac{1}{ab\left(a+b\right)+1}\)
\(=\dfrac{c}{abc\left(a+b\right)+c}=\dfrac{c}{a+b+c}\left(abc=1\right)\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\le\dfrac{a+b+c}{a+b+c}=1=VP\)
Khi \(a=b=c=1\)
\(a^5+b^2+ab+6\ge3a^2b+6\)
\(\Rightarrow P\le\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{\sqrt{a^2b+2}}+\dfrac{1}{\sqrt{b^2c+2}}+\dfrac{1}{\sqrt{c^2a+2}}\right)\le\sqrt{\dfrac{1}{a^2b+2}+\dfrac{1}{b^2c+2}+\dfrac{1}{c^2a+2}}=\sqrt{Q}\)
\(Q=\dfrac{c}{a+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}=\dfrac{1}{2}\left(1-\dfrac{a}{a+2c}+1-\dfrac{b}{b+2a}+1-\dfrac{c}{c+2b}\right)\)
\(Q=\dfrac{3}{2}-\dfrac{1}{2}\left(\dfrac{a^2}{a^2+2ac}+\dfrac{b^2}{b^2+2ab}+\dfrac{c^2}{c^2+2bc}\right)\)
\(Q\le\dfrac{3}{2}-\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)
\(\Rightarrow P\le\sqrt{1}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Bài 1:
Đặt \(a^2=x;b^2=y;c^2=z\)
Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)
Áp dụng BĐT cô si ta có:
\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)
\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)
Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)
Cộng lại ta được:
\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)
Sau đó bình phương hai vế rồi
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng
Vậy...
Bài 2:
Trước hết ta chứng minh bất đẳng thức sau:
\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)
Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau:
\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)
\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)
\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)
Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)
Từ đó ta có:
\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)
Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có
\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)
Dấu = xảy ra khi a=b=c
c bạn tự làm nhé mình mệt rồi :D
Lời giải:
Đặt \(A=(a+1)(b+1)(c+1)\)
\(6A=(a+1)(b+b+2)(c+c+c+3)\)
Áp dụng BĐT AM-GM ta có:
\(6A\geq 2\sqrt{ab}.3\sqrt[3]{2b^2}.4\sqrt[4]{3c^3}\)
\(\Leftrightarrow 6A\geq 24\sqrt{a}.\sqrt[3]{2b^2}.\sqrt[4]{3c^3}=24\sqrt[12]{a^6.16b^8.27c^9}\)
\(\Leftrightarrow A\geq 4\sqrt[12]{432a^6b^8c^9}\) (1)
Lại có:
\(abc=ab(6-a-b)=\frac{2}{9}.3a.\frac{3}{2}b(6-a-b)\)
\(\leq \frac{2}{9}.\left(\frac{3a+\frac{3}{2}b+6-a-b}{3}\right)^3\) (BĐT AM-GM ngược dấu)
\(\Leftrightarrow abc\leq \frac{2}{9}\left(\frac{6+2a+\frac{b}{2}}{3}\right)^3\leq \frac{2}{9}\left(\frac{6+2+1}{3}\right)^3\)
\(\Leftrightarrow abc\leq 6\) (2)
Từ (1); (2) suy ra \(A\geq 4\sqrt[12]{2.(abc)^3.a^6b^8c^9}\geq 4\sqrt[12]{a^3b.a^3b^3c^3.a^6b^8c^9}\)
(do \(a\leq 1, b\leq 2\))
hay \(A\geq 4\sqrt[12]{(abc)^{12}}=4abc\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \((a,b,c)=(1,2,3)\)
cách này số vẫn hơi to quá :)