K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2021

a) P(x) = 2x4 + x3 - 2x - 5x3 + 2x2 + x + 1

= 2x4 + (x3 - 5x3) + 2x2 + (x - 2x) + 1

= 2x4 - 4x3 + 2x2 - x + 1

b) P(0) = 2 . 04 - 4 . 03 + 2 . 02 - 0 + 1 = 1

P(1) = 2 . 14 - 4 . 13 + 2 . 12 - 1 + 1 = 0

c) P(-1) = 2 . (-1)4 - 4 . (-1)3 + 2 . (-1)2 - (-1) + 1 = 10

=> x = -1 không là nghiệm của đa thức P(x)

Ta có: P(1) = 0

=> x = 1 là nghiệm của đa thức P(x)

AH
Akai Haruma
Giáo viên
18 tháng 6 2021

Lời giải:
a.

$P(x)=2x^4+(x^3-5x^3)+2x^2+(-2x+x)+1$

$=2x^4-4x^3+2x^2-x+1$

b) 
$P(0)=2.0^4-4.0^3+2.0^2-0+1=1$

$P(1)=2-4+2-1+1=0$

c.

$P(1)=0$ (theo phần b) nên $x=1$ là nghiệm của đa thức $P(x)$

$P(-1)=2+4+2+1+1=10\neq 0$ nên $x=-1$ không là nghiệm của đa thức $P(x)$

18 tháng 3 2022

Thu gọn và sắp xếp các hạng tử của đa thức theo lũy thừa giảm dần của biến:                        P(x)=x3+2x2+2

P(1)=13+2.12+2=1+2+2=5

P(-1)=(-1)3+2.(-1)2+2=(-1)+2+2=3

12 tháng 4 2017

a. Ta có:

f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2

= 2x3 + 3x2 - 2x + 3 (0.5 điểm)

g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2

= 2x3 + 3x2 - 7x + 2 (0.5 điểm)

`@` `\text {Ans}`

`\downarrow`

`a)`

\(P(x) = 5x^3 + 3 - 3x^2 + x^4 - 2x - 2 + 2x^2 + x\)

`= x^4 + 5x^3 + (-3x^2 + 2x^2) + (-2x+x) + (3-2)`

`= x^4 + 5x^3 - x^2 - x + 1`

\(Q(x) = 2x^4 + x^2 + 2x + 2 - 3x^2 - 5x + 2x^3 - x^4\)

`= (2x^4 - x^4) + 2x^3 + (x^2 - 3x^2) + (2x-5x) + 2`

`= x^4 + 2x^3 - 2x^2 - 3x +2`

`b)`

`P(x)+Q(x) = (x^4 + 5x^3 - x^2 - x + 1) + (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 + x^4 + 2x^3 - 2x^2 - 3x +2`

`= (x^4+x^4)+(5x^3 + 2x^3) + (-x^2 - 2x^2) + (-x-3x) + (1+2)`

`= 2x^4 + 7x^3 - 3x^2 - 4x + 3`

`P(x)-Q(x)=(x^4 + 5x^3 - x^2 - x + 1) - (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 - x^4 - 2x^3 + 2x^2 + 3x -2`

`= (x^4 - x^4) + (5x^3 - 2x^3) + (-x^2+2x^2)+(-x+3x)+(1-2)`

`= 3x^3 + x^2 + 2x - 1`

`Q(x)-P(x) = (x^4 + 2x^3 - 2x^2 - 3x +2)-(x^4 + 5x^3 - x^2 - x + 1)`

`= x^4 + 2x^3 - 2x^2 - 3x +2-x^4 - 5x^3 + x^2 + x - 1`

`= (x^4-x^4)+(2x^3 - 5x^3)+(-2x^2+x^2)+(-3x+x)+(2-1)`

`= -3x^3 - x^2 - 2x + 1`

`@` `\text {Kaizuu lv u.}`

a: \(A=-5x^3+9x^3-2x^2-2x^2+x-x+1\)

\(=4x^3-4x^2+1\)

\(B=-4x^3+2x^3-2x^2+2x^2+6x-9x-2\)

\(=-2x^3-3x-2\)

\(C=x^3-6x^2+2x-4\)

b: \(A\left(x\right)+B\left(x\right)-C\left(x\right)\)

\(=4x^3-4x^2+1-2x^3-3x-2+x^3-6x^2+2x-4\)

\(=3x^3-10x^2-x-4\)

11 tháng 5 2022

a, \(P\left(x\right)=5x^2-3x+7\)

\(Q\left(x\right)=-5x^3-x^2+4x-5\)

b, Thay x = 1 vào Q(x) ta được 

-5 - 1 + 4 - 5 = -7 

c, \(Q\left(x\right)+P\left(x\right)=-5x^3+4x^2+x+2\)

\(Q\left(x\right)-P\left(x\right)=-5x^3-6x^2+7x-12\)

\(-5x^3+9x^2+x=0\Leftrightarrow x\left(-5x^2+9x+1\right)=0\Leftrightarrow x=0;x=\dfrac{9\pm\sqrt{101}}{10}\)

11 tháng 5 2022

d đâu bn

9 tháng 5 2022

P(x) = \(-x^4-5x^3-6x^2+5x-1\)

Q(x) = \(x^4+5x^3+6x^2-2x+3\)

M(x) = P(x) + Q(x)

    \(-x^4-5x^3-6x^2+5x-1\)

+

       \(x^4+5x^3+6x^2-2x+3\)

     ------------------------------------

                                    \(3x+2\)

Vậy : M(x) = 3x + 2

Nghiệm của M(x) : 3x + 2 = 0

                               3x       = -2

                                 x       = \(-\dfrac{2}{3}\) 

a) \(P\left(x\right)=x^4-5x^3-1-6x^2+5x-2x^4\)

     \(P\left(x\right)=\left(x^4-2x^4\right)-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-6x^2+5x-1\)

 

     \(Q\left(x\right)=3x^4+6x^2+5x^3+3-2x^4-2x\)

     \(Q\left(x\right)=\left(3x^4-2x^4\right)+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+5x^3+6x^2-2x+3\)

b) Ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

        \(\begin{matrix}\Rightarrow P\left(x\right)=-x^4-5x^3-6x^2+5x-1\\Q\left(x\right)=x^4+5x^3+6x^2-2x+3\\\overline{P\left(x\right)+Q\left(x\right)=0+0+0+3x+2}\end{matrix}\)

Vậy \(M\left(x\right)=3x+2\)

Cho \(M\left(x\right)=0\)

hay \(3x+2=0\)

       \(3x\)       \(=0-2\)

       \(3x\)        \(=-2\)

          \(x\)        \(=-2:3\)

          \(x\)         \(=\dfrac{-2}{3}\)

Vậy \(x=\dfrac{-2}{3}\) là nghiệm của đa thức \(M\left(x\right)\)

 

Câu 16              Cho đa thức     M = x2  + 5x4  − 3x3  + x2  + 4x4  + 3x3  − x + 5N = x − 5x3  − 2x2  − 8x4  + 4 x3  − x + 5a.  Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biếnb.  Tính  M+N; M- NCâu 17. Cho đa thức A = −2 xy 2  + 3xy + 5xy 2  + 5xy + 1 a.  Thu gọn đa thức A.           b.  Tính giá trị của A tại x= ;y=-1Câu 18. Cho hai đa thức                                P ( x) = 2x4  − 3x2  + x -2/3 và Q( x) = x4  − x3  + x2  +5/3a....
Đọc tiếp

Câu 16              Cho đa thức

     M = x2  + 5x4  − 3x3  + x2  + 4x4  + 3x3  − x + 5

N = x − 5x3  − 2x2  − 8x4  + 4 x3  − x + 5

a.  Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến

b.  Tính  M+N; M- N

Câu 17. Cho đa thức A = −2 xy 2  + 3xy + 5xy 2  + 5xy + 1

 

a.  Thu gọn đa thức A.

           b.  Tính giá trị của A tại x= ;y=-1

Câu 18. Cho hai đa thức

 

                               P ( x) = 2x4  − 3x2  + x -2/3 và Q( x) = x4  − x3  + x2  +5/3

a.  Tính M (x) = P( x) + Q( x)

                        b.  Tính N ( x) = P( x) − Q( x) và tìm bậc của đa thức N ( x)

Câu 19.  Cho hai đa thức: f(x) = 9 – x5 + 4x - 2x3 + x2 – 7x4

 

               g(x) = x5 – 9 + 2x2 + 7x4 + 2x3 - 3x

 

a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến

 b) Tính tổng h(x) = f(x) + g(x).

c) Tìm nghiệm của đa thức h(x).

Câu 20: Cho P(x) = 2x3 – 2x – 5 ; Q(x) = –x3 + x2 + 1 – x.

 Tính:

a.  P(x) +Q(x);

b.  P(x) − Q(x).

Câu 21: Cho đa thức                                                                                                                                      f(x) = – 3x2 + x – 1 + x4   – x3– x2 + 3x4

 

g(x) = x4 + x2 – x3 + x – 5 + 5x3 – x2

 

a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến. b) Tính: f(x) – g(x);  f(x) + g(x)

c) Tính g(x) tại x = –1.

Câu 22: Cho đa thức P = 5x2 – 7y2 + y – 1; Q = x2 – 2y2

a)      Tìm đa thức M = P – Q

b)      Tính giá trị của M tại x=1/2 và y= -1/5

 

Câu  23  Tìm đa thức A biết A + (3x2 y − 2xy3 ) = 2x2 y − 4xy3

Câu 24 Cho P( x) = x4 − 5x +  x2 + 1 và

Q( x) = 5x + 3 x2 + 5 + x2 + x4 .

 

a)Tìm  M(x)=P(x)+Q(x)

b.  Chứng tỏ  M(x) không có nghiệm

Câu 25)     Cho đa thức  P(x) = 5x-; Q(x) = x2 – 9.; R(x) = 3x2 – 4x

a.  Tính P(-1);Q(-3);R()

b.  Tìm nghiệm của các đa thức trên

1

21:

a: \(f\left(x\right)=4x^4-x^3-4x^2+x-1\)

\(g\left(x\right)=x^4+4x^3+x-5\)

b: f(x)-g(x)

=4x^4-x^3-4x^2+x-1-x^4-4x^3-x+5

=3x^4-5x^3-4x^2+4

f(x)+g(x)

=4x^4-x^3-4x^2+x-1+x^4+4x^3+x-5

=5x^4+3x^3-4x^2+2x-6

c: g(-1)=1-4-1-5=-9

 

25 tháng 12 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8