Cho a - b =p . p là số nguyên tố . CMR : UCLN(a;b)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Gọi ƯC(3n+4,5n+7)=d
=>3n+4 chia hết cho d=>5.(3n+4)=15n+20 chia hết cho d
5n+7 chia hết cho d=>3.(5n+7)=15n+21 chia hết cho d
=>15n+21-15n-20 chia hết cho d
=>1 chia hết cho d
=>d=Ư(1)=1
=>ƯC(3n+4,5n+7)=1
=>3n+4 và 5n+7 là 2 số nguyên tố cùng nhau
2. Ta có:
+) Nếu p = 2 => 2 + 10 = 12 (không là số nguyên tố), 2 + 14 = 16 (không là số nguyên tố) => loại p = 2
+) Nếu p = 3 => 3 + 10 = 13 (là số nguyên tố), 3 + 14 = 17 (là số nguyên tố) => chọn p = 3
+) Nếu p > 3 => p = 3k + 1. p = 3k + 2 (k \(\in\) N*)
=> p = 3k + 1 => p + 10 = 3k + 12 chia hết cho 3 => loại p = 3k + 1
=> p = 3k + 2 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 2.
Vậy p = 3.
\(ƯCLN=32=2^5\)
\(2^a=2^a\)
\(2^{a-b}=2^a:2^b\)
Vì \(2^a>2^{a-b}\)
Nên để thỏa đề thì ƯCLN bằng chính số bé
\(2^{a-b}=2^5\)
\(\Rightarrow a-b=5\)
\(a=5+b\)
Nếu b là số lẻ thì a là số chẵn là hợp số nên không thỏa mãn đề
Nếu b là số chẵn thì số a lẻ có thể thỏa đề
mà b là số nguyên tố nên b = 2
Vậy b = 2 ; a = 7
a - b = p . p là số nguyên tố
=> p . p không thỏa mãn
a - b là số nguyên tố
=> UCLN(a, b) = 1
=> đpcm