K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

ta có : a/b = b/c = c/a

          a/c = b/b = c/a

          a/a = b/b = c/c = 1

Do đó a=b=c mà a= 2005 => b=c=2005

16 tháng 7 2017

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)

Mà a = 2005 => b=c=2005

16 tháng 7 2016

a+b+c=0

=>a+b=-c;b+c=-a;a+c=-b

Thay a+b=-c;b+c=-a;a+c=-b là M ta được:\(M=\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=-1-1-1=-3\)

13 tháng 7 2017

a, Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c 

b, Áp dung TCDTSBN ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y = z

Vậy \(\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c, ac = b2 => \(\frac{a}{b}=\frac{b}{c}\left(1\right)\)

ab = c2 => \(\frac{b}{c}=\frac{c}{a}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c

Vậy \(\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

13 tháng 7 2017

a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Vậy a = b ; a = c ; c = a => a=b=c

b, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y; y = z; z = x => x = y = z

\(\Rightarrow\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{333+666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c,

Theo đề bài:

ac = bb <=> bb/a = c

ab = cc <=> ab/c = c

=> bb/a = ab/c

=> bbc = aab 

=> bc = ab

Mà cc = ab => cc = bc => b = c

ac/b = b

cc/a = b

=> ac/b = cc/a

=> aac = bcc

=> aa = bc

Mà bc = cc => aa = cc => a = c

=> a = b = c

\(\Rightarrow\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

8 tháng 3 2021

tên sai kìa,EKAWADA CONAN mà

25 tháng 6 2018

\(a+b+c=0\Rightarrow a+b=-c;a+c=-b;b+c=-a\)

\(\frac{a+b}{a-b}\left(\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right)=\frac{a+b}{a-b}\cdot\frac{a-b}{a+b}+\frac{a+b}{a-b}\left(\frac{b-c}{b+c}+\frac{c-a}{c+a}\right)\)

\(=1+\frac{a+b}{a-b}\cdot\frac{\left(b-c\right)\left(c+a\right)+\left(c-a\right)\left(b+c\right)}{\left(b+c\right)\left(c+a\right)}=1+\frac{a+b}{a-b}\cdot\frac{bc+ab-c^2-ac+bc+c^2-ab-ac}{-a\cdot-b}\)

\(=1+\frac{\left(a+b\right)\left(2bc-2ac\right)}{\left(a-b\right)ab}=1+-\frac{2c\left(a+b\right)\left(a-b\right)}{\left(a-b\right)ab}=1+\frac{-2c\cdot-c}{ab}=1+\frac{2c^2}{ab}\left(đpcm\right)\)

25 tháng 6 2018

Ta có: \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)thay vào biểu thức đã cho:

\(\frac{a+b}{a-b}\left(\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right)\)\(=\frac{-c}{a-b}\left(\frac{a-b}{-c}+\frac{b-c}{-a}+\frac{c-a}{-b}\right)\)

\(=1+\frac{-c\left(b-c\right)}{-a\left(a-b\right)}+\frac{-c\left(c-a\right)}{-b\left(a-b\right)}=1+\frac{c\left(b-c\right)}{a\left(a-b\right)}+\frac{c\left(c-a\right)}{b\left(a-b\right)}\)

\(=1+\frac{bc\left(b-c\right)}{ab\left(a-b\right)}+\frac{ac\left(c-a\right)}{ab\left(a-b\right)}=1+\frac{b^2c-bc^2+ac^2-a^2c}{ab\left(a-b\right)}\)

\(=1+\frac{c\left(b^2-a^2\right)-\left(bc^2-ac^2\right)}{ab\left(a-b\right)}=1+\frac{c\left(b-a\right)\left(a+b\right)-c^2\left(b-a\right)}{ab\left(a-b\right)}\)

\(=1+\frac{\left(b-a\right).\left[c\left(a+b\right)-c^2\right]}{ab\left(a-b\right)}=1+\frac{\left(a-b\right).\left[c^2-c\left(a+b\right)\right]}{ab\left(a-b\right)}\)

\(=1+\frac{c^2-\left(-c\right).c}{ab}=1+\frac{c^2-\left(-c^2\right)}{ab}=1+\frac{2c^2}{ab}\)(đpcm).

13 tháng 7 2016

a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

  • TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
  • TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

b) Đề bài sai ^^

23 tháng 12 2018

Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Suy ra:

 \(\frac{a}{b+c}=\frac{1}{2}\Rightarrow a=\frac{b+c}{2}=\frac{1}{2}\times\left(b+c\right)\)

\(\frac{b}{a+c}=\frac{1}{2}\Rightarrow b=\frac{a+c}{2}=\frac{1}{2}\times\left(a+c\right)\)

\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow c=\frac{a+b}{2}=\frac{1}{2}\times\left(a+b\right)\)

Thay  \(a=\frac{1}{2}\times\left(b+c\right)\);  \(b=\frac{1}{2}\times\left(a+c\right)\)\(c=\frac{1}{2}\times\left(a+b\right)\) vào P ta được:

\(\frac{b+c}{\frac{1}{2}\times\left(b+c\right)}+\frac{c+a}{\frac{1}{2}\times\left(a+c\right)}+\frac{a+b}{\frac{1}{2}\times\left(a+b\right)}\)

\(=\frac{\text{ }1\text{ }}{\frac{1}{2}}+\frac{1}{\frac{1}{2}}+\frac{1}{\frac{1}{2}}\)

\(=2+2+2=6\)

Vậy giá trị của P  là 6