Giả sử p là số nguyên tố ; a,b là các số nguyên và \(\frac{1}{p}=\frac{1}{a}+\frac{1}{b}\). Tìm tất cả các số p và a hoặc b là những số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 9 là SNT ( số nguyên tố ) lớn 3
=> p khi chia cho 3 có 2 dạng:
p = 3k + 1 hoặc p = 3k + 2 ( k thộc N* )
+) với: p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1
= 6k + 2 + 1 = 6k + 3 chia hết cho 3 và lớn hơn 3
=> 2p + 1 là hợp số ( loại )
Vậy: p = 3k + 2
=> 4p + 1 = 4 . ( 3k + 2 ) + 1
= 12k + 8 + 1 = 12k + 9 chia hết cho 3 và lớn hơn 3
=> 4p + 1 là hợp số ( điều phải chứng minh )
Kết luận:
p nguyên tố > 3
=> p chia 3 dư 1,2
=> 2p + 1 chia 3 dư 0, 2
Mà 2p+1 nguên tố <=> 2p+1 chia 3 dư 2 <=> p chia 3 dư 2
=> 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 chia hết cho 3
=> 4p+1 là hợp số
\(\frac{2013n^2+3}{8}\inℤ\Leftrightarrow2013n^2+3⋮8\Leftrightarrow8.251.n^2+5n^2+3⋮8\)
Vì \(8.251.n^2⋮8\) nên \(5n^2+3⋮8\Leftrightarrow5n^2+3-8⋮8\Leftrightarrow5\left(n^2-1\right)⋮8\)
Vì 5 và 8 là 2 số nguyên tố cùng nhau nên \(n^2-1⋮8\Leftrightarrow\left(n-1\right)\left(n+1\right)⋮8\)
Vì các số nguyên tố lớn hơn 2 đều lẻ nên sẽ có dạng (4k+1) hoặc (4k+3), k là số tự nhiên
\(\Rightarrow\left(n-1\right)\left(n+1\right)=\orbr{\begin{cases}\left[\left(4k+1\right)-1\right]\left[\left(4k+1\right)+1\right]=4k\left(4k+2\right)⋮8\\\left[\left(4k+3\right)-1\right]\left[\left(4k+3\right)+1\right]=\left(4k+2\right)\left(4k+4\right)⋮8\end{cases}}\)
(Vì (4k+2) là số chẵn và (4k), (4k+4) đều chia hết cho 4 nên tích của chúng chia hết cho 8) ---->đpcm
bạn ơi, đề sai rồi kìa, p bằng bao nhiêu thì 1.2.3. ... .(p-1).p chắc chắn phải chia hết cho p rồi, với lại mk thử lấy p=3 thì 1.2.3. ... .(p-1).p=1.2.3=6 ⋮ p nhưng p là hợp số mà
Nếu \(p\ne3\)thì \(p=3k\pm1\).
Khi đó \(p^2+2=\left(3k\pm1\right)^2+3=9k^2\pm6k+3⋮3\)mà dễ thấy \(p^2+2>3\)
do đó \(p^2+2\)không là số nguyên tố.
Suy ra \(p=3\). Khi đó \(p^3+2=29\)là số nguyên tố. (đpcm)
anh mình giải hộ đấy:
vì a và b là số lẻ
=> a+b là số chẵn
=> a+b chia hết cho 2
làm xong nhớ thanks nha^-^
Bài 1) +Với n = 2, ta có 22 + 22 = 4 + 4 = 8, là hợp số, loại
+Với n = 3, ta có 23 + 32 = 8 + 9 = 17, là số nguyên tố, chọn
+Với n > 3, do n nguyên tố nên n lẻ => n = 2k+1 ( k thuộc N*)
=> 2n = 22k+1 = 22k . 2 = (2k)2 . 2, do 2 không chia hết cho 3 => 2k không chia hết cho => (2k)2 không chia hết cho 3
Mà (2k)2 là số chính phương nên (2k)2 chia 3 dư 1 => (2k)2 . 2 chia 3 dư 2.
Mặt khác n2 không chia hết cho 3 do n nguyên tố > 3 nên n2 chia 3 dư 1 => 2n + n2 chia hết cho 3
Mà 1 < 3 < 2n + n2 nên 2n + n2 là hợp số, loại
Vậy n = 3
Bài 2) Do p nguyên tố không nhỏ hơn 5 nên p không chia hết cho 3 => p2 không chia hết cho 3. Mà p2 là số chính phương nên p2 chia 3 dư 1 => p2 - 1 chia hết cho 3 (1)
Do p nguyên tố không nhỏ hơn 5 nên p lẻ => p2 lẻ => p2 chia 8 dư 1 => p2 - 1 chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 nên p2 - 1 chia hết cho 8
Chứng tỏ p2 - 1 chia hết cho 8 với p nguyên tố không nhỏ hơn 5
Vì P là số nguyên tố, P là scp
=> Vô lý
Vậy không tìm được giá trị nào
Vì P là số nguyên tố, P là scp
=> Vô lý
Vậy không tìm được giá trị nào