K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2015

a) Tứ giác AECF có AE//CF; AE=CF nên AECF là hình bình hành

=> Hai đường chéo AC và EF cắt nhau tại trung điểm của mỗi đường

Mà O là trung điểm của AC(t/c hình bình hành ABCD)

nên O cũng là trung điểm của EF hay E và F đối xứng nhau qua O.

b) TA CÓ 

AB=CD hay AE+EB = CF+FD

mà AE=CF => EB=FD

Vì AC//Cy nên góc KFD=ACD

Vì AC//Ex nên góc BEI=BAC

mà Góc BAC= ACD từ 3 điều này suy ra góc KFD=IEB

Xét tam giác DFK và BEI có 

Góc KDF=IBE

FD=EB(cmt)

góc KFD=IEB

=> tam giác DFK =BEI

=> KF=IE

Tứ giác EIFK có EI//FK ( FK//AC//EI); EI=FK(cmt) nên EIFK là hình bình hành

nên hai đường chéo EF và IK cắt nhau tại trung điểm của mỗi đường

mà  O là trung điểm của EF nên O cũng là trung điểm của IK

Hay I và K đối xứng nhau qua O.

30 tháng 10 2021

a: Xét ΔAEB và ΔCFD có 

AE=CF

\(\widehat{EAB}=\widehat{FCD}\)

AB=CD

Do đó: ΔAEB=ΔCFD

Suy ra:BE=FD

Xét ΔADE và ΔCBF có 

AE=CF

\(\widehat{DAE}=\widehat{BCF}\)

AE=CF

Do đó: ΔADE=ΔCBF

Suy ra: DE=BF

Xét tứ giác BEDF có 

BE=DF

DE=BF

Do đó: BEDF là hình bình hành

30 tháng 10 2021

giải hộ em câu c vs ạ

30 tháng 1 2022

a.- Xét △KDC có:

DC//BF (ABCD là hình bình hành).

=>\(\dfrac{CK}{KF}=\dfrac{DK}{BK}\) (định lí Ta-let). (1)

- Xét △KDM có:

MD//BD (ABCD là hình bình hành).

=>\(\dfrac{DK}{BK}=\dfrac{MK}{CK}\) (định lí Ta-let). (2)

- Từ (1) và (2) suy ra:

\(\dfrac{CK}{KF}=\dfrac{KM}{CK}\). Vậy \(CK^2=KM.KF\)

b. - Xét △KDC có:

DC//BF (ABCD là hình bình hành).

=> \(\dfrac{DK}{BK}=\dfrac{CK}{CF}\) (định lí Ta-let). (3)

- Xét △KDM có:

MD//BD (ABCD là hình bình hành).

=>\(\dfrac{DK}{BK}=\dfrac{MK}{CM}\) (định lí Ta-let). (4)

- Từ (3) và (4) suy ra:  \(\dfrac{CK}{CF}=\dfrac{MK}{CM}\)

=>\(\dfrac{CK}{CF}=\dfrac{MK}{CM}=\dfrac{CK+MK}{CF+CM}\) (t/c tỉ lệ thức).

=>\(\dfrac{CK}{CF}=\dfrac{CM}{CF+CM}\)

=>\(CK=\dfrac{CM.CF}{CF+CM}\)
=>\(\dfrac{1}{CK}=\dfrac{CF+CM}{CM.CF}\)

=>\(\dfrac{1}{CK}=\dfrac{1}{CF}+\dfrac{1}{CM}\)

NV
30 tháng 1 2022

c.

Do \(\widehat{DBC}=\widehat{CBE}\Rightarrow BC\) là phân giác trong góc \(\widehat{DBE}\) trong tam giác BDE

Theo định lý phân giác: \(\dfrac{BE}{BD}=\dfrac{CE}{CD}\) (1)

Trong tam giác MCD, do \(AF||CD\) nên theo định lý Talet:  \(\dfrac{AF}{CD}=\dfrac{MF}{MC}\)

Trong tam giác MCE, do \(BF||CE\) nên theo định lý Talet: \(\dfrac{BF}{CE}=\dfrac{MF}{MC}\)

\(\Rightarrow\dfrac{AF}{CD}=\dfrac{BF}{CE}\Rightarrow\dfrac{CE}{CD}=\dfrac{BF}{AF}\) (2)

(1);(2) \(\Rightarrow\dfrac{BF}{AF}=\dfrac{BE}{BD}\) (đpcm)

6 tháng 3 2016

CN = 3,5 cm