CMR: KHÔNG CÓ SỐ X;Y NÀO THỎA MÃN ĐẲNG THỨC SAU :
A) 4X2+3Y2-4X+30Y+78=0
B) 3X2+6Y2-12X-20Y+40=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : f(x) = x2 - x + 5
= x2 - \(\frac{1}{2}.2x\)+ \(\left(\frac{1}{2}\right)^2\)+ \(\frac{19}{4}\)
= \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\)
vì \(\left(x-\frac{1}{2}\right)^2\ge0\) \(\forall\)x thuộc R
\(\Rightarrow\)\(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\)> 0 \(\forall\)x thuộc R
vậy ...
Câu hỏi của trần manh kiên - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo câu tương tự tại đây nhé.
Nhận xét: với a, b nguyên , n nguyên dương ta có:
aⁿ và a cùng tính chẳn, lẻ ;
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ
và do đó, với x là số lẻ ta có:
a.xⁿ + b.x^(x-1) cùng tính chẳn lẻ với a+b
Tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có:
a.xⁿ + b.x^(x-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c
- - - - - -
Đặt: f(x) = a.xⁿ + b.x^(x-1) + ...+ c.x + d
có f(0) = d lẻ (do giả thiết)
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn với x nguyên tuỳ ý ta có hai trường hợp:
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ)
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn)
=> f(x) lẻ
Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên
=> f(x) không có nghiệm nguyên
Nhận xét: với a, b nguyên , n nguyên dương ta có:
aⁿ và a cùng tính chẳn, lẻ ;
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ
và do đó, với x là số lẻ ta có:
a.xⁿ + b.x^(n-1) cùng tính chẳn lẻ với a+b
tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có:
a.xⁿ + b.x^(n-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c
- - - - - -
đặt: f(x) = a.xⁿ + b.x^(n-1) + ...+ c.x + d
có f(0) = d lẻ (do giả thiết)
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn
với x nguyên tuỳ ý ta có hai trường hợp:
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ)
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn)
=> f(x) lẻ
Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên
=> f(x) không có nghiệm nguyên
~~~~~~~~~~~~
- Gỉa sử a là nghiệm nguyên của P(X) .
- Khi đó P(x) có dạng : \(P_{\left(x\right)}=\left(x-a\right)g\left(x\right)\)
- Theo bài ra ta có : \(P\left(x\right)=\left(2-a\right)\left(3-a\right)\left(4-a\right)g\left(2\right)g\left(3\right)g\left(4\right)=154\)
Thấy : \(\left(2-a\right)\left(3-a\right)\left(4-a\right)⋮3\forall a\in Z\)
Mà \(154⋮̸3\)
Vậy đa thức P(x) không có nghiệm nguyên .
a) 4x2+3y2-4x+30y+78
=4x2-4x+1+3y2+30y+75+2
=(4x2-4x+1)+3(y2+10y+25)+2
=(2x-1)2+3(y+5)2+2>0 với mọi x
=>ko có x;y nào thỏa mãn
b)3x2+6y2-12x-20y+40
\(=3\left(x^2-4x+4\right)+6\left(y^2-\frac{10}{3}+\frac{25}{9}\right)+\frac{34}{3}\)
\(=3\left(x-2\right)^2+6\left(y-\frac{5}{3}\right)^2+\frac{34}{3}>0\) với mọi x
=>ko có x;y nào thỏa mãn
con này dễ mà