Bài 2: Cho đường tròn (O; R) và một điểm S nằm bên ngoài sao cho OS = 3R Tử S, về hai tiếptuyến SE, SF và cát tuyển SAB với đường tròn đó (A nằm giữa B và S). Gọi H là trung điểm củadây AB.
a/ Chứng minh: 5 điểm S, E, H, O, F cùng năm trên một đường tròn.
b/ Chứng minh: ES² - SA. SB
c/Tính diện tích hình tròn ngoại tiếp từ giác SEOF, biết R = 2cm
d/ Vẽ đường tròn tâm S bán kính SE. Tính diện tích hình quạt tròn giới hạn 2 bán kính SE, SF và cung nhỏ EF
a: ΔOAB cân tại O
mà OH là đường trung tuyến
nên OH\(\perp\)AB tại H
Ta có: \(\widehat{OHS}=\widehat{OES}=\widehat{OFS}=90^0\)
=>O,H,S,E,F cùng thuộc đường tròn đường kính OS
b: Xét (O) có
\(\widehat{SEA}\) là góc tạo bởi tiếp tuyến ES và dây cung EA
\(\widehat{EBA}\) là góc nội tiếp chắn cung EA
Do đó: \(\widehat{SEA}=\widehat{EBA}\)
Xét ΔSEA và ΔSBE có
\(\widehat{SEA}=\widehat{SBE}\)
\(\widehat{ESA}\) chung
Do đó: ΔSEA~ΔSBE
=>\(\dfrac{SE}{SB}=\dfrac{SA}{SE}\)
=>\(SE^2=SA\cdot SB\)
a/ Ta có: ∠SEF = ∠SOF = 90° (do SE, SF là tiếp tuyến của đường tròn (O; R))
Do đó: ∠EHF = ∠SEF + ∠SOF = 180°
Suy ra: E, H, F cùng nằm trên một đường tròn. Vì ∠EHF = 180° nên H là tâm đường tròn đi qua E, F.
Ta có: ∠SHO = ∠SEO + ∠EOF = 90° + 90° = 180°
Suy ra: S, H, O cùng nằm trên một đường tròn. Vì ∠SHO = 180° nên H là tâm đường tròn đi qua S, O.
Vậy: S, E, H, O, F cùng nằm trên một đường tròn.
b/ Ta có: ∠ESB = ∠EAB (do ES, EB là tiếp tuyến của đường tròn (O; R))
Do đó: ∆ESB ~ ∆EAB (theo góc - cạnh - góc)
Suy ra: ES/EA = SB/AB
Vì H là trung điểm của AB nên AH = HB = AB/2
Suy ra: ES² = EA.AB = 2EA.AH = SA.SB (do EA = SA - AH)
c/ Ta có: SO = 3R = 6cm
Do đó: d = 2SO = 12cm
Suy ra: Diện tích hình tròn ngoại tiếp từ giác SEOF là: π(d/2)² = π(12/2)² = 36π (cm²)
d/ Ta có: ∠SEF = 90°
Do đó: mỗi cung EF = 90°/360° = 1/4
Suy ra: Diện tích hình quạt tròn giới hạn 2 bán kính SE, SF và cung nhỏ EF là: 1/4π(SE)² = 1/4πR² = 1/4π(2)² = π (cm²