Cho đường tròn (O;R) và điểm A cố định thỏa mãn OA = 2R. Một đường kính BC quay quanh O sao cho A, B, C không thẳng hàng. Đường tròn ngoại tiếp tam giác ABC cắt đường OA ở P (khác A). Đường thẳng AB, AC cắt (O) ở điểm thứ hai là D và E. Nối DE cắt OA ở K. Chứng minh:
1) Các tam giác OPB, AOC đồng dạng và tứ giác PECK nội tiếp
2) AK.AP = AE.AC
3) Đường thẳng DE đi qua một điểm cố định
4) Đường tròn ngoại tiếp tam giác ADE đi qua điểm cố định F từ đó suy ra vị trí CB để diện tích tứ giác ABPC lớn nhất
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan