Cho đường tròn (O;R) và một điểm A sao cho OA = R √ 2. Vẽ các tiếp tuyến AB, AC với đường tròn. Một góc xOy= 45 độ cắt đoạn thẳng AB và AC lần lượt tại D và E, DE là tiếp tuyến của đường tròn (O). Chứng minh 2/3 R<DE<R.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Gọi BC giao OD và OE lần lượt tại H và K.
Vì \(OA=R\sqrt{2}=OB\sqrt{2}=OC\sqrt{2}\) nên tứ giác ABOC là hình vuông
Suy ra \(\widehat{ABC}=\widehat{DOE}=45^0\), suy ra tứ giác DBOK nội tiếp
Do đó \(\widehat{DKO}=180^0-\widehat{DBO}=90^0\) hay \(DK\perp OE\)
Tương tự \(EH\perp OD\). Suy ra \(\widehat{BDO}=\widehat{BKO}=\widehat{EDO}\) do DHKE nội tiếp
Suy ra DO là phân giác \(\widehat{BDE}\). Mà AO là phân giác \(\widehat{DAE}\) nên O là tâm bàng tiếp góc A của \(\Delta ADE\)
Do vậy \(DE+AD+AE=2AB=2R\)
Ta có \(2R=DE+AD+AE>DE+DE=2DE\Rightarrow DE< R\)
Lại có \(\frac{2}{3}R=\frac{DE+AD+AE}{3}< \frac{DE+DE+DE}{3}=DE\)
Vậy \(\frac{2}{3}R< DE< R.\)