Cho đường tròn (O;R) và điểm A nằm ngoài (O) sao cho OA = 2R, vẽ tiếp tuyến AB với (O). Gọi BH là đường cao ∆ABO, BH cắt (O) tại C.
a) Cm AC là tiếp tuyến (O)
b) Từ O vẽ đường vuông góc với OB cắt AC tại K. Cm KA = KO.
c) Đoạn OA cắt (O) tại I. Cm IK là tiếp tuyến (O), tính IK theo R.
d) AI cắt (O) tại điểm thứ hai D. Cm ∆AIC ~ ∆ACD từ đó suy ra tích AI × AD không đổi.
a: Ta có: ΔOBC cân tại O
mà OH là đường cao
nên OH là phân giác của góc BOC
=>OA là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}\)
mà \(\widehat{OBA}=90^0\)
nên \(\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O)
b: Ta có: \(\widehat{KOA}+\widehat{BOA}=\widehat{BOK}=90^0\)
\(\widehat{KAO}+\widehat{COA}=90^0\)(ΔCOA vuông tại C)
mà \(\widehat{BOA}=\widehat{COA}\)
nên \(\widehat{KOA}=\widehat{KAO}\)
=>ΔKAO cân tại K