Cho đường tròn (O;R) điểm M nằm ngoài đường tròn sao cho OM=2R, qua M kẻ 2 tiếp tuyến MA và MA(A,B là tiếp điểm).Tính ^AOB và ^AMB
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
O M A B 1 2 1 2
Do MA là tiếp tuyến của (O) => MA \(\perp\)AO
Có \(cosO_1=\frac{OA}{OM}=\frac{R}{2R}=\frac{1}{2}\)
\(\Rightarrow\widehat{O_1}=60^o\)
Tương tự \(\widehat{O_2}=60^o\)
\(\Rightarrow\widehat{AOB}=\widehat{O_1}+\widehat{O_2}=60^o+60^o=120^o\)
Có: \(\widehat{AOB}+\widehat{OBM}+\widehat{BMA}+\widehat{MAO}=360^o\)
\(\Leftrightarrow120^o+90^o+\widehat{BMA}+90^o=360^o\)
\(\Leftrightarrow\widehat{BMA}=60^o\)
Vậy ...