Cho nửa (O;R) đường kính AB , M thuộc nửa (O) . H là điểm chính giữa AM . Tia HB giao AM tại I , tiếp tuyến của nửa (O) tại A cắt BH tại K , AH giao BM tại E
a) tam giác BAE cân
b)KH.KB=KE^2
c) (B) bán kính AB giao AM tại N . BIEN nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ACD=góc AMD=90 độ
=>ACMD nội tiếp
góc BMK+góc BCK=180 độ
=>BMKC nội tiếp
b: Xét ΔCAK vuông tại C và ΔCDB vuông tại C có
góc CAK=góc CDB
=>ΔCAK đồng dạng với ΔCDB
=>CA/CD=CK/BC
=>CA*CB=CD*CK
a: gó ACB=1/2*180=90 độ
=>BC vuông góc MA
góc ADB=1/2*180=90 độ
=>AD vuông góc MB
góc MCN+góc MDN=180 độ
=>MCND nội tiếp
b: Xet ΔMAB có
AD,BC là đường cao
AD cắt CB tại N
=>N là trực tâm
=>M,N,H thẳng hàng
c: góc ODI=góc ODN+góc IDN
=góc IND+góc OAD
=góc OAD+góc HNA=90 độ
=>OD là tiếp tuyến của (I)
a: Xét tứ giác HAOM có
\(\widehat{HAO}+\widehat{HMO}=90^0+90^0=180^0\)
=>HAOM là tứ giác nội tiếp
b: Xét (O) có
HA,HM là các tiếp tuyến
Do đó: HA=HM và OH là phân giác của góc MOA
Xét (O) có
KM,KB là các tiếp tuyến
Do đó: KM=KB và OK là phân giác của góc MOB
Ta có: HM+MK=HK(M nằm giữa H và K)
mà HM=HA và KM=KB
nên HA+KB=HK
c: Ta có: HA=HM
=>H nằm trên đường trung trực của AM(1)
Ta có: OA=OM
=>O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra HO là đường trung trực của AM
=>HO\(\perp\)AM
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó; ΔAMB vuông tại M
=>AM\(\perp\)MB
Ta có: HO\(\perp\)AM
AM\(\perp\)MB
Do đó: HO//MB
=>\(\widehat{AOH}=\widehat{ABM}\)
Xét ΔAHO vuông tại A và ΔMAB vuông tại M có
\(\widehat{AOH}=\widehat{MBA}\)
Do đó: ΔAHO đồng dạng với ΔMAB
=>\(\dfrac{HO}{AB}=\dfrac{AO}{MB}\)
=>\(HO\cdot MB=AO\cdot AB=2R^2\)
BẠN TỰ VẼ HÌNH NHA
a)Ta có: \(\widehat{AHB}\)=90 độ (góc nội tiếp chắn nửa đường tròn)
=> BH\(\perp\)AH=> BH\(\perp\)AE=> BH là đường cao của \(\Delta\)BAE (1)
Ta lại có: \(\widehat{ABH}=\dfrac{1}{2}sđ\)cung AH(góc nội tiếp chắn cung AH)
và \(\widehat{MBH}=\dfrac{1}{2}sđ\)cung HM (góc nội tiếp chắn cung HM)
mà cung AH=cung HM( H là điểm chính giữa AM)
=>\(\widehat{ABH}=\widehat{MBH}\) => \(\widehat{ABH}=\widehat{EBH}\)(M thuộc EB)
=>BN là tia phân giác của \(\Delta\)BAE (2)
Từ (1) và (2) => \(\Delta\)BAE cân
b)Xét \(\Delta ABK\) và \(\Delta EBK\) , ta có:
\(\left\{{}\begin{matrix}KBchung\\AB=EB\left(\Delta BAEcân\right)\\\widehat{ABK}=\widehat{EBK}\end{matrix}\right.\)
=> \(\Delta ABK=\Delta EBK\)(c.g.c)
=>\(\widehat{ABK}=\widehat{EBK}\)(2 góc tương ứng)
mà \(\widehat{ABK}\)=90 độ(tiếp tuyến của nửa (O) tại A)
=>\(\widehat{EBK}\)=90 độ
Xét \(\Delta\)KEB vuông tại E có đường cao EH
\(KE^2=KH.KB\)(hệ thức lượng)