Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R) , 2 đường cao BD và CE cắt nhau tại H, gọi K là giao điểm của AO với (O;R)
1) Chứng minh: tứ giác BEDC nội tiếp
2) Chứng minh: góc ABC= góc ADE
3) Gọi M là trung điểm của BC. Chứng minh: 3 điểm H, M, K thẳng hàng
4) Giả sử góc ACB = 60 độ. Chứng minh tam giác HOC cân
5) Khoảng cách từ A đến H gấp 2 lần khoảng cách từ O đến BC
6) Gọi G là trọng tâm của tam giác ABC. Chứng minh: 3 điểm H,G,O thẳng hàng và HG = 2GO
7) AH cắt (O) tại F. Chứng minh: H và F đối xứng nhau qua BC
8) Chứng minh: tứ giác BCKF là hình thang cân
9) Gọi P và Q theo thứ tự là giao điểm của BD và CE với (O). Chứng minh: PQ song song với DE
Giúp mình với T-T
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)
=> Tứ giác BCFK nội tiếp
b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )
mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)
=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị
=> KF//DE
\(a,\widehat{ACM}=90^0\) (góc nt chắn nửa đg tròn)
\(b,\widehat{BAH}+\widehat{ABH}=90^0;\widehat{OAC}+\widehat{AMC}=90^0\left(\widehat{ACM}=90^0\right)\)
Mà \(\widehat{ABH}=\widehat{AMC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\)
Do đó \(\widehat{BAH}=\widehat{OAC}\)
a: góc BHD+góc BMD=180 độ
=>BHDM nội tiếp
b: BHDM nội tiếp
=>góc HDM+góc HBM=180 độ
=>góc ADM=góc ABC
=>góc ADM=góc ADC
=>DA là phân giáccủa góc MDC
c: Xét tứ giác DHNC có
góc DHC=góc DNC=90 độ
=>DHNC nội tiếp
=>góc NHD=góc NDC
góc NHD+góc MHD
=180 độ-góc NCD+góc MBD
=180 độ+180 độ-góc ABD-góc ACD
=180 độ
=>M,H,N thẳng hàng
1: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
2: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc BAD chung
Do đó:ΔADB\(\sim\)ΔAEC
Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
Do đó: ΔADE\(\sim\)ΔABC
hay \(\widehat{ADE}=\widehat{ABC}\)
cảm ơn nhaa