Cho đường tròn (O;R), lần lượt đặt theo một chiều kể từ A các cung \(\stackrel\frown{AB},\stackrel\frown{BC,}\stackrel\frown{CD}\) sao cho \(sđ\stackrel\frown{AB}=60^0,sđ\stackrel\frown{BC}=90^0,sđ\stackrel\frown{CD}=120^0\). CMR:
a) ABCD là hình thang cân
b) \(AC\perp BD\)
c) Gọi M, N lần lượt là trung điểm của CD, AB. Trên tia đối tia AD lấy P, gọi Q là giao điểm của PN và DB. CMR: MN là phân giác của góc \(\widehat{PMQ}\).