K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(AD=DC=\dfrac{AC}{2}\)(D là trung điểm của AC)

\(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)

mà AC=AB(ΔBAC cân tại A)

nên AD=DC=AE=EB

Xét ΔADE có AE=AD(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔADB và ΔAEC có

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

AD=AE(cmt)

Do đó: ΔADB=ΔAEC(c-g-c)

c) Ta có: ΔAED cân tại A(gt)

nên \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAED cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AED}=\widehat{ABC}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên ED//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Xét tứ giác BCDE có ED//BC(cmt)

nên BCDE là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)

Hình thang BCDE(ED//BC) có BD=EC(ΔADB=ΔAEC)

nên BCDE là hình thang cân(Dấu hiệu nhận biết hình thang cân)

9 tháng 5 2022

a. Xét \(2\Delta:\Delta BDC\) và \(\Delta CMD\) có:

\(\left\{{}\begin{matrix}\widehat{B}=\widehat{C}\left(gt\right)\\BC.chung\end{matrix}\right.\)

\(\Rightarrow\Delta BDC=\Delta CMD\) (cạnh huyền - góc nhọn)

b. Vì \(\Delta BDC=\Delta CMD\) (theo câu a)

\(\Rightarrow\widehat{DCB}=\widehat{MBC}\) (2 góc tương ứng)

\(\Rightarrow\Delta BCE\) cân tại E

25 tháng 4 2018

Xét tam giác BKC vuông tại K và tam giác CHB vuông tại H

Ta có : BC là cạnh huyền chung

           góc KBC = góc HCB ( tam giác ABC cân tại A )

Nên tam giác BKC = tam giác CHB ( cạnh huyền - góc nhọn )

=> góc KCB = góc HBC ( 2 góc tương ứng )

=> tam giác IBC cân tại I

25 tháng 4 2018

giải:

Vì tam giác ABC cân tại A=>AB=AC, góc ABC= góc ACB

Xét tam giác BAH và tam giác CAK có:

tam giác BAH cân tại H

----------- CAK --------- K

cạnh huyền AB=AC

góc nhọn A chung

=> Tam giác BAH = tam giác CAK ( cạnh huyền-góc nhọn)

=> góc ABH= góc ACK

Mà góc ACB= góc ABC

=>góc IBC= góc ICB

=> tam giác BIC cân tại I


A C B H K I

Đặt x=góc BAC

=>góc ABC=góc ACB=90 độ-1/2*x

góc DAC=góc ACD=x

góc ABC=góc BDC=90 độ-x/2

=>góc DCB=180 độ-2*góc BAC=x

góc ACD+góc DCB=góc ABC=90 độ-x/2

=>5/2*x=90

=>x=36

=>góc BAC=36 độ

26 tháng 10 2023

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó: ΔEBC=ΔDCB

b: ΔEBC=ΔDCB

=>EB=DC

AE+EB=AB

AD+DC=AC

mà EB=DC và AB=AC

nên AE=AD

Xét ΔABC có AE/AB=AD/AC

nên ED//BC

Xét tứ giác BEDC có ED//BC

nên BEDC là hình thang

Hình thang BEDC có \(\widehat{EBC}=\widehat{DCB}\)

nên BEDC là hình thang cân

26 tháng 2 2021

Giải:

a)Vì tam giác ABC cân tại A=> <ABC=<ACB và AB=AC (dấu "<" trước tên góc là kí hiệu của góc nha)

Xét tam giác AMB và tam giác AMC có:

+<MAC=<MAB(AM là phân giác của <BAC)

+AB=AC(cmt)

+AM chung

=>tam giác AMB=tam giác AMC(g.c.g)

b)Xét tam giác AEM và tam giác AFM có:

+AM chung

+<MAE=<MAP(AM là phân giác của <BAC)

+<AEM=<APM=90°(gt)

=>tam giác AEM=tam giác AFM (ch-gn)

=>AE=AF(2 cạnh tương ứng)

=>tam giác AFE là tam giác cân.

26 tháng 2 2021

A B C M E F

a,Xét ∆AMB và ∆AMC có :

AB = AC (giả thiết)

∠BAM = ∠CAM (giả thiết)

AM chung

=> ∆AMB = ∆AMC (c.g.c)

b, Xét 2 tam giác vuông AME và AMF có :

AM chung

∠EAM = ∠FAM (giả thiết)

=> ∆AME = ∆AMF (cạnh huyền - góc nhọn)

=> AE = AF (cặp cạnh tương ứng)

=> ∆AFE cân tại A