Cho hình thang ABCD (AB // CD). Gọi M, N; P; Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Khẳng định nào sau đây là đúng?
A. A B → = M N →
B. C D → = M N ⇀
C. A B → = C D →
D. M N → = Q P →
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình thang ABCD là hình thang cân có hai góc kề một đáy đều bằng 45 0 thì MNPQ là hình vuông.
MNPQ là hình thoi vì là hình bình hành có hai cạnh kề bằng nhau.
Gọi S là giao điểm của AD và BC. Nếu quay tam giác SCD quanh trục SN, các đoạn thẳng SC. SB lần lượt tạo ra mặt xung quanh của hình nón ( H 1 ) v à ( H 2 ) .
Cho hình thang ABCD(AB//CD) và C+D=90 . Gọi M,N lần lượt là trung điểm của AB và CD .C/m: MN=CD-AB/2
Cho hình thang ABCD(AB//CD) và C+D=90 . Gọi M,N lần lượt là trung điểm của AB và CD .C/m: MN=CD-AB/2
a) Vì ABCD là hình thang cân có AB // CD nên:
AC = BD (1)
Xét ∆ADC và ∆BCD, ta có:
AC = BD (chứng minh trên )
AD = BC (ABCD cân)
CD cạnh chung
⇒ΔACD=ΔBCD(c.c.c)⇒ΔACD=ΔBCD(c.c.c)
⇒ACDˆ=BDCˆ⇒ACD^=BDC^
Hay OCDˆ=ODCˆOCD^=ODC^
Suy ra tam giác OCD cân tại O
Suy ra: (tính chất tam giác cân) (2)
Từ (1) và (2) suy ra: OA = OB
Lại có: MD=3MO(gt)⇒NC=3NOMD=3MO(gt)⇒NC=3NO
Trong tam giác OCD, ta có: MOMD=NONC=13MOMD=NONC=13
Suy ra: MN // CD (Định lí đảo của định lí Ta-lét )
Ta có: OD = OM + MD = OM + 3OM = 4OM
Trong tam giác OCD, ta có: MN // CD
⇒OMOB=MNAB⇒OMOB=MNAB (Hệ quả định lí Ta-lét)
⇒MNAB=OM2OM=12⇒MNAB=OM2OM=12
Vậy: AB=2MN=2.1,4=2,8(cm)AB=2MN=2.1,4=2,8(cm)
b) Ta có: CD−AB2=5,6−2,82=2,82=1,4(cm)CD−AB2=5,6−2,82=2,82=1,4(cm)
Vậy: MN=CD−AB2
Gọi P là trung điểm BC. Ta thấy PM là đường trung bình của tam giác ABC nên \(PM=\dfrac{AB}{2}=\dfrac{7}{2}\) và PM//AB.
Mặt khác, PN là đường trung bình của tam giác ACD nên \(PN=\dfrac{CD}{2}=\dfrac{9}{2}\) và PN//CD//AB.
Theo tiên đề Euclid, P, M, N thẳng hàng và M nằm giữa N và P. Suy ra \(MN=PN-PM=\dfrac{9}{2}-\dfrac{7}{2}=1\). Vậy \(MN=1\)
*Xét tam giác ABC có M; N là trung điểm của AB, BC nên MN là đường trung bình của tam giác.
⇒ M N / / A C ; M N = 1 2 A C ( 1 )
* Xét tam giác ADC có P; Q là trung điểm của CD, DA nên PQ là đường trung bình của tam giác.
⇒ P Q / / A C ; P Q = 1 2 A C ( 2 )
* Từ (1) (2) suy ra PQ// MN; PQ = MN.
Khi đó M N → = Q P →
Đáp án D