Xác định hệ số a,b của đa thức P(x)=a*x+b Biết rằng P(1)=-5/3;P(-1/2)=4/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: P(1) = a . 1 + b = a + b = 1 (*)
P(2) = a . 2 + b = 2a + b = 5 (**)
(**) - (*) <=> a = 4
=> b = -3
Ta có:
+) P(1) = 1a+b =a+b=1 (1)
+) P(2) = 2a+b=5 (2)
Từ (1) và (2), ta có hệ phương trình: \(\hept{\begin{cases}a+b=1\\2a+b=5\end{cases}}\)
Giải hệ phương trình, ta có: a=4; b=-3
Vậy a=4; b=-3.
a: Bậc là 2
Hệ số cao nhất là -7
Hệ số tự do là 1
b: Thay x=2 vào A=0, ta được:
\(a\cdot2^2-3\cdot2-18=0\)
\(\Leftrightarrow4a=24\)
hay a=6
c: Ta có: C+B=A
nên C=A-B
\(=6x^2-3x-18-1-4x+7x^2\)
\(=13x^2-7x-19\)
Vì P(0) = 1
=> P(0) = a.0 + b = 1
0 + b = 1
=> b = 1
Vì P(2) =5
=> a.2 +b = 5
Thay b =1 ta có
a.2 +1 = 5
a.2 = 5 -1
a. 2 = 4
a = 4 : 2
a = 2
Vậy (a ; b ) = ( 2 ; 1)
a: Bậc là 2
Hệ số cao nhất là 2
Hệ số tự do là -12
b: M+N
=2x^2+5x-12+x^2-8x-1
=3x^2-3x-13