Cho tam giác ABC có AB >BC, đường trung tuyến AM trên tia đối của tia MA lấy D; MD = MA.
a) Cm: AB = CD, AB//CD.
b)So sánh : góc MAB và góc MAC.
c) So sánh : góc AMB và góc AMC.
cú tui câu c vớii
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
b: ΔMAB=ΔMDC
=>góc MAB=góc MDC
=>AB//CD
c: Xét tứ giác ABCE có
N là trung điểm chung của AC và BE
=>ABCE là hình bình hành
=>AB//EC
=>C,E,D thẳng hàng
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: MA=2,5cm
MB<AB
=>góc BAM<góc AMB
c: Xét tứ giác ABNC có
M là trung điểm chung của AN và BC
=>ABNC là hbh
mà góc BAC=90 độ
nên ABNC là hcn
=>CN vuông góc CA
Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.
Xét \(\Delta BMI\)và \(\Delta CME\)có:
\(BM=CM\left(gt\right)\)
\(\widehat{BMI}=\widehat{CME}\) (đối đỉnh)
\(MI=ME\left(gt\right)\)
Do đó: \(\Delta BMI=\Delta CME\left(c.g.c\right)\)
Trong 2 tam giác bằng nhau, bạn phải viết đỉnh tương ứng thì mới đúng.
Chúc bạn học tốt.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét ΔMBA và ΔMCD có
MB=MC
\(\widehat{AMB}=\widehat{DMC}\)
MA=MD
Do đó: ΔMBA=ΔMCD
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AB=CD và AB//CD
b: Sửa đề: AB<AC
AB=CD
=>CD<AC
=>góc CAD<góc CDA
=>góc CAD<góc BAD
c: góc AMB=góc MAC+góc ACB
góc AMC=góc MAB+góc ABC
mà góc MAC<góc MAB và góc ACB<góc ABC
nên góc AMB<góc AMC
omg cảm ơn bạn, giờ tui mới vào lại xem =))