Cho tam giác ABC có AB>AC.Trên cạnh AB;AC lấy tương ứng 2 điểm N;M sao cho AM=AN .Gọi O là giao điểm của BM và CN .Chứng minh rằng:OC<OB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔADE có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)
AB=AE
Do đó: ΔADB=ΔADE
a) Ta có:
ABC cân tại A nên gócABC= góc ACB và AB=AC
AB=AC (2 cạnh tương ứng)
AD+BD=AE+CE
Mà AD=AE
SUY RA:BD=CE
Xét tam giác bcd và tam giác ceb có
góc ABC= GÓC ACB(CMT)
BD=CE(CMT)
BCchung
do đó tam giác bcd= tam giác ceb(c.g.c)
suy ra BE=CD(đpcm)
Vậy ......
chúc bạn học tốt
Xét tam giác ABE và tam giác ACD có
AB=AC(gt)
AD=AE(gt)
góc A chung
\(\Rightarrow\)tam giác ABE= tam giác ACD(cgc)
\(\Rightarrow\)BE=CD(2 cạnh tương ứng)
a) Mình không biết làm!!!
b) tam giác MBD = tam giác MCE (cmt)
suy ra (2 cạnh tương ứng )
Tam giác AMD và tam giác AME có
DM = EM (cmt)
AD = AE (gt)
AM là cạnh chung
do đó tam giác AMD = tam giác AME (c.c.c)
c) ta thừa nhận tính chất 2 tam giác cân chung đỉnh thì 2 góc đáy bằng nhau
ta có tam giác ADE cân tại A ( AD = AE ) và tam giác ABD cân tại A ( gt)
suy ra góc ADE = góc AED = góc ABC = góc ACB
ta lấy góc ADE = góc ABC
mà 2 góc này ở vị trí đồng vị suy ra DE//BC