Cho tứ giác ABCD ; M,N lần lượt là trung điểm của AB , BC. Chứng minh rằng : AB + CD >= 2MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mệnh đề \(P \Rightarrow Q\) là: “Nếu tứ giác ABCD là hình chữ nhật thì tứ giác ABCD là hình bình hành”
Đúng vì mỗi hình chữ nhật đều là hình bình hành.
b) Mệnh đề \(P \Rightarrow Q\) là: “Nếu tứ giác ABCD là hình thoi thì tứ giác ABCD là hình vuông”
Sai vì hầu hết các hình thoi không là hình vuông
ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)
kết hợp với giả thiết ta có diện tích ADF bằng BCF
hay d(A,DF).DF.1/2=d(B,CF).CF.1/2
hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC
vậy => đpcm
ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)
kết hợp với giả thiết ta có diện tích ADF bằng BCF
hay d(A,DF).DF.1/2=d(B,CF).CF.1/2
hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC
vậy => đpcm
Sửa đề: M là trung điểm của AD
Gọi E là trung điểm của BD
Xét ΔDAB có
M là trung điểm của AD
E là trung điểm của BD
DO đó: ME là đường trung bình
=>ME=AB/2
Xét ΔBDC có
E là trung điểm của BD
N là trung điểm của BC
Do đó: EN là đường trung bình
=>EN=DC/2
\(MN\le ME+EN=\dfrac{AB+CD}{2}\)
nên \(AB+CD\ge2MN\)