K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

  1. Cho tam giác ABC, M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao choME= MA. Chứng minh rằng: a) AC = EB và AC // Beb) gọi I là một trên AC; K là một điểm trên EB sao choAI= EK. Chứng minh ba điểm I, M, K thẳng hàngc) Từ E kẻ EH vuông góc BC ( H thuộc BC ) Biết góc HBE= 50 độ; MEB = 25 độ. Tính góc HẺM và BME2) Cho tam giác ABC có góc B và góc C nhỏ hơn 90 độ. Vẽ ra phía ngoài tam giác ấy các...
Đọc tiếp

 

 

1. Cho tam giác ABC, M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao choME= MA. Chứng minh rằng: 

a) AC = EB và AC // Be

b) gọi I là một trên AC; K là một điểm trên EB sao choAI= EK. Chứng minh ba điểm I, M, K thẳng hàng

c) Từ E kẻ EH vuông góc BC ( H thuộc BC ) Biết góc HBE= 50 độ; MEB = 25 độ. Tính góc HẺM và BME

2) Cho tam giác ABC có góc B và góc C nhỏ hơn 90 độ. Vẽ ra phía ngoài tam giác ấy các tam giác cân ABD và ACE( trong đó góc ABD và góc ACE đều bằng 90 độ) vẽ DI và EK cùng vuông góc với đường thẳng BC . Chứng minh rằng:

a) BI = CK; EK = HC

b)BC=DI+ EK

3/ Cho tam giác ABC có góc A > 90 độ. Gọi là trung điểm của cạnh BC . Trên tia đối của tia IB lấy điểm D sao cho IB = ID. Nối C với D

a) Chứng minh tam giác AIB = tam giác CID

b) gọi M là trung điểm của BC , N là trung điểm của CD. Chứng minh rằng I là trung điểm của LN

c) Chứng minh góc AIB<góc BIC

d) Tìm điều kiện của tam giác ABCđể AC vuông góc với CD

 

Cần lời giải gấp ạ, mơn nhiều

 

0
22 tháng 1 2022

A B C M E I K

a) xét

 \(\Delta BME\text{VÀ}\Delta CMA\\ BM=CM\left(gt\right)\\ \widehat{BME}=\widehat{CMA}\\ MA=ME\left(gt\right)\\ \Delta BME=\Delta CMA\left(c-g-c\right)\Rightarrow BE=AC\\ \widehat{EMB}=\widehat{ACM}\left(\text{MÀ Ở VỊ TRÍ SO LE TRONG}\right)\\ \Rightarrow AC\text{//}BE\)

:V lười gõ tiếp quá ;-;

mà bạn cho mình hỏi. =) mình thấy bạn đăng toàn câu hỏi nâng cao bạn đang thi HSG hả ;-; mình 24/1 thi rồi =) không biết bạn có thi không =))) 

17 tháng 4 2022

a, xét tam giác MAC và tâm giác MEB 

có{ME=MA(gt);BM=MC;tam giác MAC= tam giác MEB(c-g-c)

=> AC = EB=>EMB^=ACM^( mà ở vị trí so le trong)

=> AC// BE

b, Xét tam giác AIM và tam giác KME

có { AI=KE(gt);M3^=M4^; AM=ME(gt)

=> tam giác AIM= tam giác KME(c-g-c)

=> IM=MK

=> I,M,K thẳng hàng

c, ta có : tam giác HEB 

có { H^ =90°;B^ =50°;MEB^=25°

=> H^ + B^ + MEB^ +HEM^ =180° 

=> 90°+50°+25°+HEM^ =180°

=> HEM^ =180°-90°-50°-25°

=> HEM^=15°

lại có tam giác BME

{B^=50°;E^=25°

=> B^+E^+BME^= 180°

=> BME^ = 180° -25°-50°

=> BME^ =105°

Hơi khó nhìn,nếu bạn không hiểu phần nào bạn hỏi mình nhé.Nếu bạn có ý kiến gì về bài giải và phương pháp giải của mình bạn có thể hỏi mình nha.Mình sẽ trả lời bạn.

18 tháng 2 2022

Xét tam giác MAC và tam giác MEB có:

\(\left\{{}\begin{matrix}ME=MA\\\text{^}AMC=\text{^EMB }\\MB=MC\end{matrix}\right.\) 

⇒  tam giác MAC = tam giác MEB (c.g.c)

⇒ \(AC=EB\left(tươngứng\right)\)

4 tháng 11 2016
a)AC=EB và AC//BEem chứng minh tam giác AMC = tam giác EMB (c.g.c)=> AC = EB và góc CAM = góc BEM mà 2 góc này ở vị trí so le trong nên AC//BEb) Chứng minh ba điểm I,M,K thẳng hàng.em chứng minh IC = BK, góc ACM = góc EBM( suy ra từ câu a)khi đó tam giác IMC = tam giác KMB (c.g.c)=> góc IMC = góc KMBkhi đó góc IMK = 180 độI, M, K thẳng hàng
16 tháng 11 2016

Má sao ko ai tick vậy

15 tháng 4 2022

bạn tham khảo link này nha:

https://qanda.ai/vi/solutions/zag1U2SSkY.

17 tháng 12 2017

A B C M E K I Câu trả lời mình gửi sau:

31 tháng 10 2021

k biết

 

11 tháng 12 2021

b: Xét tứ giác ABEC có

M là trung điểm của AE

M là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AB//EC

11 tháng 12 2021

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//EC

11 tháng 12 2021

\(a,\left\{{}\begin{matrix}AM=ME\\BM=MC\\\widehat{AMC}=\widehat{BME}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMC=\Delta EMB\left(c.g.c\right)\\ b,\left\{{}\begin{matrix}AM=ME\\BM=MC\\\widehat{AMB}=\widehat{CME}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta EMC\left(c.g.c\right)\\ \Rightarrow\widehat{MAB}=\widehat{MEC}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}EC\\ c,\left\{{}\begin{matrix}\widehat{MAI}=\widehat{MEK}\\AM=ME\\KE=AI\end{matrix}\right.\Rightarrow\Delta AMI=\Delta EMK\left(c.g.c\right)\\ \Rightarrow\widehat{AMI}=\widehat{EMK}\\ \text{Mà 2 góc này ở vị trí đối đỉnh và }A,M,E\text{ thẳng hàng nên }I,M,K\text{ thẳng hàng}\)