Cho tứ giác ABCD .Gọi E,F,I theo thứ tự là trung điểm của AD,BC,AC. Gọi M là trung điểm của ED.Từ M kẻ đường thẳng song song với EI,cắt AC tại N.
Chứng minhrằng:
a)EI//CD;IF//AB.
b)BiếtIN=3cm.TínhđộdàiđoạnthẳngIC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hong biết máy chị có bị lỗi gì k mà chị thấy hình như đề bị cắt á em
Có gì em tự đánh máy ra cái đề luôn nhé
Cho tứ giác ABCD.Gọi E,F,I theo thứ tự là trung điểm của AD,BC,AC.Gọi M là trung điểm củaED.Từ M kẻ đường thẳng song songvới EI,cắt AC tại N.Chứng minh rằng
a)EI//CD;IF//AB
.b)Biết IN=3cm.Tính độ dài đoạn thẳng IC
Ta có `E,F,I` là trung điểm của `AD,BC,AC`
`=> EI,IF` là đường trung bình của `\Delta ADC` và `\Delta ACB`
`=> EI////CD , EI = 1/2CD`
`=> IF////AB,IF=1/2AB`
Xét ΔADC có
E là trung điểm của AD(gt)
I là trung điểm của AC(gt)
Do đó: EI là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)
Suy ra: EI//DC
Xét ΔABC có
I là trung điểm của AC(gt)
F là trung điểm của BC(gt)
Do đó: IF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: IF//AB
1: Xét ΔCAB có
F,E lần lượt là trung điểm của CA,CB
=>FE là đường trung bình của ΔCAB
=>FE//AB và \(FE=\dfrac{AB}{2}\)
Xét ΔDAB có
G,H lần lượt là trung điểm của DA,DB
=>GH là đường trung bình của ΔDAB
=>GH//AB và \(GH=\dfrac{AB}{2}\)
GH//AB
FE//AB
Do đó: GH//FE
Ta có: \(GH=\dfrac{AB}{2}\)
\(FE=\dfrac{AB}{2}\)
Do đó: GH=FE
Xét tứ giác EFGH có
GH=FE
GH//FE
Do đó: EFGH là hình bình hành
2: AB=CD
mà AB=8cm
nên CD=8cm
Xét ΔADC có
G,F lần lượt là trung điểm của AD,AC
=>GF là đường trung bình của ΔADC
=>GF//DC và \(GF=\dfrac{DC}{2}=4cm\)
GF//DC
DC\(\perp\)AB
Do đó: GF\(\perp\)AB
Ta có: GF\(\perp\)AB
AB//GH
Do đó: GH\(\perp\)GF
Xét hình bình hành GHEF có GH\(\perp\)GF
nên GHEF là hình chữ nhật
=>\(S_{GHEF}=GH\cdot GF=\dfrac{AB}{2}\cdot\dfrac{CD}{2}=4\cdot4=16\left(cm^2\right)\)
1: Xét ΔCAB có
F,E lần lượt là trung điểm của CA,CB
=>FE là đường trung bình của ΔCAB
=>FE//AB và FE=AB
2
Xét ΔDAB có
G,H lần lượt là trung điểm của DA,DB
=>GH là đường trung bình của ΔDAB
=>GH//AB và GH=AB
2
GH//AB
FE//AB
Do đó: GH//FE
Ta có: GH=AB2
F
E
=
A
B
2
Do đó: GH=FE
Xét tứ giác EFGH có
GH=FE
GH//FE
Do đó: EFGH là hình bình hành
2: AB=CD
mà AB=8cm
nên CD=8cm
Xét ΔADC có
G,F lần lượt là trung điểm của AD,AC
=>GF là đường trung bình của ΔADC
=>GF//DC và
G
F
=
D
C
2
=
4
c
m
GF//DC
DC
⊥
AB
Do đó: GF
⊥
AB
Ta có: GF
⊥
AB
AB//GH
Do đó: GH
⊥
GF
Xét hình bình hành GHEF có GH
⊥
GF
nên GHEF là hình chữ nhật
=>
S
G
H
E
F
=
G
H
⋅
G
F
=
A
B
2
⋅
C
D
2
=
4
⋅
4
=
16
(
c
m
2
)
a: Xét ΔADC có
E là trung điểm của AD
I là trung điểm của AC
Do đó: EI là đường trung bình
=>EI//CD
Xét ΔCAB có
F là trung điểm của BC
I là trung điểm của AC
Do đó: FI là đường trung bình
=>FI//AB
\(a,\left\{{}\begin{matrix}AE=ED\\AI=IC\end{matrix}\right.\Rightarrow EI\) là đtb tam giác ADC \(\Rightarrow EI//CD\)
\(\left\{{}\begin{matrix}AI=IC\\BF=FC\end{matrix}\right.\Rightarrow IF\) là đtb tam giác ABC \(\Rightarrow IF//AB\)
\(b,\) Đề thiếu