K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2018

\(\Delta IAB\)cân tại I nên \(\widehat{IAB}=\widehat{IBA}\)( tính chất tam giác cân )

AB // CD (gt) \(\Rightarrow\hept{\begin{cases}\widehat{IAB}=\widehat{ICD}\\\widehat{IBA}=\widehat{IDC}\end{cases}\left(SLT\right)}\)

Do đó: \(\widehat{ICD}=\widehat{IDC}\Rightarrow\Delta ICD\)cân tại I \(\Rightarrow IC=ID\)( định nghĩa )

Ta có: \(IA+IC=IB+ID\Rightarrow AC=BD\)

Hình thang ABCD có AB // CD và 2 đường chéo AC, BD bằng nhau

Vậy ABCD là hình thang cân.

Chúc bạn học tốt.

Xét ΔADC và ΔBCD có 

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{ICD}=\widehat{IDC}\)

Xét ΔIDC có \(\widehat{ICD}=\widehat{IDC}\)

nên ΔIDC cân tại I

Suy ra: IC=ID

Ta có: IC+IA=AC

ID+IB=BD

mà AC=BD

và IC=ID

nên IA=IB

29 tháng 8 2021

     Xét △ADC và △BDC có

             BC = BD

             DC chung

             AD = BC

⇒ △ ADC = △ BCD ( c - c - c )

⇒ \(\widehat{BDC}=\widehat{ACD}\)

⇒ △ IDC cân tại I

⇒ ID = IC ( đpcm )

Mà AC = BD

⇒ IA = IB ( đpcm )

24 tháng 5 2016

banhqua

24 tháng 5 2016

sao không thấy bạn này trả lời nhỉ?

15 tháng 7 2016

a) Xét \(\Delta\)ADE và \(\Delta\)BCF :

AED^ = BFC^ =90o

AD = BC

ADE^ = BCF^ 

=> \(\Delta\)ADE = \(\Delta\)BCF (cạnh huyền_góc nhọn)

=> DE = CF (2 cạnh tương ứng)

b) Xét \(\Delta\)DAB và \(\Delta\)CBA:

AD= BC

DAB^ = CBA^ 

AB chung

=> \(\Delta\)DAB = \(\Delta\)CBA (c.g.c)

=> ADB^ =BCA^ (2 góc tương ứng)

Ta có: ADC^ = ADB^ + BDC^ => BDC^ = ADC^ - ADB^ 

         BCD^ = BCA^ + ACD^ => ACD^ = BCD^ - BCA^ 

mà ADC^ = BCD^ và ADB^ = BCA^ (cmt)

=> BDC^ = ACD^

=> \(\Delta\)DIC cân tại I 

=> ID = IC

Xét \(\Delta\)AID và \(\Delta\)BIC:

AD = BC

ADI^ = BCI^ (cmt)

ID = IC (cmt)

=> \(\Delta\)AID = \(\Delta\)BIC (c.g.c)

=> IA = IB (2 cạnh tương ứng)

c) 

d)

---ko làm nữa đâu--- +.+