K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2017

Cho tam giác ABC cân tại A, trung tuyến AM, O là trung điểm của AM. Tia BO cắt AC tại D, CO cắt AB tại E. Cho biết diện tích tam giác ADE=a^2

Tính diện tích tam giác ABC

a: BC=10cm

BH=3,6cm

11 tháng 10 2021

giúp em với 

 

11 tháng 10 2021

b: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

hay \(\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)

a: ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

b: Giả sử AB<AC

Đặt HB=x; HC=y

Theo đề, ta có: x+y=15 và xy=36

=>x=3 và y=12

=>AB=căn 3*15=3căn 5cm; AC=căn 12*15=6*căn 5(cm)

AM=AH^2/AB=6^2/3*căn 5=12/căn 5(cm)

AN=AH^2/AC=6^2/6căn 5=6/căn 5(cm)

S AMHN=AM*AN=72/5cm2

11 tháng 12 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác ABC vuông tại A, đường cao AH có:

B C 2 = A B 2 + A C 2 = 25 ⇒ BC = 5(cm)

AB2 = BH.BC ⇒ BH = AB2/BC = 9/5 = 1,8(cm)

BH + CH = BC⇒ CH = BC - BH = 5 - 1,8 = 3,2 (cm)

A H 2 = BH.CH ⇒ AH = B H . C H = 1 , 8 . 3 , 2 = 2,4 (cm)

Xét tứ giác AMHN có:

∠(MAN) = ∠(ANH) = ∠(AMH) = 90 0

⇒ Tứ giác AMHN là hình chữ nhật

⇒ MN = AH = 2,4 (cm)

19 tháng 10 2021

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

28 tháng 10 2023

a: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

b: Sửa đề: \(AE\cdot EB+AF\cdot FC=HB\cdot HC\)

Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot EB=HE^2\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot FC=HF^2\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\)

\(AE\cdot EB+AF\cdot FC=HE^2+HF^2\)

\(=EF^2=AH^2=HB\cdot HC\)

12 tháng 11 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

18 tháng 3 2021

A B C H M I N

a, Xét tam giác AHM và tam giác ACH ta có : 

^H = ^HMA = 900

^A _ chung 

Vậy tam giác AHM ~ tam giác ACH ( g.g )

\(\Rightarrow\frac{AH}{AC}=\frac{AM}{AH}\)( tỉ số đồng dạng ) \(\Rightarrow AH^2=AM.AC\)

b, đề sai ko ?